Searching for statistical physics : 9 results found | RSS Feed for this search

6.728 Applied Quantum and Statistical Physics (MIT) 6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others. 6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | applied quantum physics | quantum physics | quantum physics | statistical physics | statistical physics | quantum mechanics | quantum mechanics | Schrodinger | Schrodinger | tunneling | tunneling | harmonic oscillator | harmonic oscillator | hydrogen atom | hydrogen atom | variational methods | variational methods | Fermi-Dirac | Fermi-Dirac | Bose-Einstein | Bose-Einstein | Boltzmann | Boltzmann | distribution function | distribution function | electron microscope | electron microscope | scanning tunneling microscope | scanning tunneling microscope | thermonic emitter | thermonic emitter | atomic force microscope | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT) 8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | membranes | protein motors | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution | statistical physics | statistical physics | molecular biology | molecular biology | deoxyribonucleic acid | deoxyribonucleic acid | genes | genes | genetics | genetics | gene sequencing | gene sequencing | phylogenetics | phylogenetics | double helix | double helix | RNA | RNA | ribonucleic acid | ribonucleic acid | force | force | motion | motion | packaging | packaging | protein motors | protein motors | membranes | membranes | biochemistry | biochemistry | genome | genome | optimization | optimization | partitioning | partitioning | pattern recognition | pattern recognition | collective behavior | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT) 6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others. 6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | applied quantum physics | quantum physics | quantum physics | statistical physics | statistical physics | quantum mechanics | quantum mechanics | Schrodinger | Schrodinger | tunneling | tunneling | harmonic oscillator | harmonic oscillator | hydrogen atom | hydrogen atom | variational methods | variational methods | Fermi-Dirac | Fermi-Dirac | Bose-Einstein | Bose-Einstein | Boltzmann | Boltzmann | distribution function | distribution function | electron microscope | electron microscope | scanning tunneling microscope | scanning tunneling microscope | thermonic emitter | thermonic emitter | atomic force microscope | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.098 Special Seminar in Applied Probability and Stochastic Processes (MIT) 15.098 Special Seminar in Applied Probability and Stochastic Processes (MIT)

Description

This seminar is intended for doctoral students and discusses topics in applied probability. This semester includes a variety of fields, namely statistical physics (local weak convergence and correlation decay), artificial intelligence (belief propagation algorithms), computer science (random K-SAT problem, coloring, average case complexity) and electrical engineering (low density parity check (LDPC) codes). This seminar is intended for doctoral students and discusses topics in applied probability. This semester includes a variety of fields, namely statistical physics (local weak convergence and correlation decay), artificial intelligence (belief propagation algorithms), computer science (random K-SAT problem, coloring, average case complexity) and electrical engineering (low density parity check (LDPC) codes).

Subjects

doctoral | doctoral | seminar | seminar | applied probability | applied probability | stochastic processes | stochastic processes | statistical physics | statistical physics | artificial intelligence | artificial intelligence | computer science | computer science | belief propagation algorithms | belief propagation algorithms | K-SAT problem | K-SAT problem | coloring | coloring | average case complexity | average case complexity | low density parity check codes | low density parity check codes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | DNA | gene finding | sequence comparison | phylogenetic trees | biopolymers | DNA double helix | secondary structure of RNA | protein folding | protein motors | membranes | cellular networks | neural networks | evolution | statistical physics | molecular biology | deoxyribonucleic acid | genes | genetics | gene sequencing | phylogenetics | double helix | RNA | ribonucleic acid | force | motion | packaging | protein motors | membranes | biochemistry | genome | optimization | partitioning | pattern recognition | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.098 Special Seminar in Applied Probability and Stochastic Processes (MIT)

Description

This seminar is intended for doctoral students and discusses topics in applied probability. This semester includes a variety of fields, namely statistical physics (local weak convergence and correlation decay), artificial intelligence (belief propagation algorithms), computer science (random K-SAT problem, coloring, average case complexity) and electrical engineering (low density parity check (LDPC) codes).

Subjects

doctoral | seminar | applied probability | stochastic processes | statistical physics | artificial intelligence | computer science | belief propagation algorithms | K-SAT problem | coloring | average case complexity | low density parity check codes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata