Searching for storage : 133 results found | RSS Feed for this search

1 2 3 4 5

ESD.172J X PRIZE Workshop: Grand Challenges in Energy (MIT) ESD.172J X PRIZE Workshop: Grand Challenges in Energy (MIT)

Description

Includes audio/video content: AV selected lectures. In 2004, the Ansari X PRIZE for suborbital spaceflight captured the public's imagination and revolutionized an industry, leveraging a $10M prize purse into over $100M in innovation. Building from that success, the X PRIZE Foundation is now developing new prizes to focus innovation around "Grand Challenge" themes, including genomics, energy, healthcare, and education. This course will examine the intersection of incentives and innovation, drawing on economic models, historic examples, and recent experience of the X PRIZE Foundation to help develop a future prize in Energy Storage Technologies. Includes audio/video content: AV selected lectures. In 2004, the Ansari X PRIZE for suborbital spaceflight captured the public's imagination and revolutionized an industry, leveraging a $10M prize purse into over $100M in innovation. Building from that success, the X PRIZE Foundation is now developing new prizes to focus innovation around "Grand Challenge" themes, including genomics, energy, healthcare, and education. This course will examine the intersection of incentives and innovation, drawing on economic models, historic examples, and recent experience of the X PRIZE Foundation to help develop a future prize in Energy Storage Technologies.

Subjects

ESD.172 | ESD.172 | EC.421 | EC.421 | energy | energy | competition | competition | innovation | innovation | incentivize prizes | incentivize prizes | resource allocation | resource allocation | innovation incentives | innovation incentives | Ansari | Ansari | X PRIZE | X PRIZE | economic models of innovation | economic models of innovation | energy storage | energy storage | grid-scale storage | grid-scale storage | prize matrix | prize matrix | genomics | genomics | Archon X PRIZE | Archon X PRIZE | Progressive Automotive X PRIZE | Progressive Automotive X PRIZE | grand challenges | grand challenges

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT) 6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this 6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical | optical signals | optical signals | optical devices | optical devices | transmission | transmission | detection | detection | storage | storage | processing | processing | display | display | electromagnetic waves | electromagnetic waves | diffraction | diffraction | holography | holography | lasers | lasers | LEDs | LEDs | spatial light modulation | spatial light modulation | display technologies | display technologies | optical waveguides | optical waveguides | fiberoptic communication | fiberoptic communication | thermal photodetector | thermal photodetector | quantum photodetector | quantum photodetector | optical storage media | optical storage media | disks | disks | 3-D holographic material | 3-D holographic material | coherent optical processor | coherent optical processor | incoherent optical processor | incoherent optical processor | Fourier optics | Fourier optics | acousto-optics | acousto-optics | optoelectronic neural networks | optoelectronic neural networks | optical interconnection device technologies | optical interconnection device technologies | image processing | image processing | pattern recognition | pattern recognition | radar systems | radar systems | adaptive optical systems | adaptive optical systems | 6.161 | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.251 Systems Analysis of the Nuclear Fuel Cycle (MIT) 22.251 Systems Analysis of the Nuclear Fuel Cycle (MIT)

Description

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers. This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

Subjects

nuclear fuel | nuclear fuel | nuclear fuel cycle | nuclear fuel cycle | thorium fuel | thorium fuel | dry recycling | dry recycling | transmutation | transmutation | radioactive waste disposal | radioactive waste disposal | waste storage | waste storage | nuclear waste | nuclear waste | nuclear reactor analysis | nuclear reactor analysis | fuel cell design | fuel cell design | reactor design | reactor design | fast reactors | fast reactors | breeder reactors | breeder reactors | CANDU reactor | CANDU reactor | light water reactor | light water reactor | LWR | LWR | nuclear non-proliferation | nuclear non-proliferation | plutonium recycling | plutonium recycling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.824 Distributed Computer Systems (MIT) 6.824 Distributed Computer Systems (MIT)

Description

This course covers abstractions and implementation techniques for the design of distributed systems. Topics include: server design, network programming, naming, storage systems, security, and fault tolerance. The assigned readings for the course are from current literature. This course is worth 6 Engineering Design Points. This course covers abstractions and implementation techniques for the design of distributed systems. Topics include: server design, network programming, naming, storage systems, security, and fault tolerance. The assigned readings for the course are from current literature. This course is worth 6 Engineering Design Points.

Subjects

distributed computer systems | distributed computer systems | abstractions | abstractions | server design | server design | network programming | network programming | naming | naming | storage systems | storage systems | security | security | fault tolerance | fault tolerance | C++ | C++

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.72 Groundwater Hydrology (MIT) 1.72 Groundwater Hydrology (MIT)

Description

This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.Technical RequirementsFEFLOW® software  is required for two problem sets on this course site. FEFLOW® (Finite Element subsurface FLOW system) is a 3-D groundwater modeling software, developed by WASY, a German consulting firm. FEFLOW® uses the finite element method to solve 3D groundwater flow equations. RealOne™ Player software is required to run the .rm files found on this course site. This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.Technical RequirementsFEFLOW® software  is required for two problem sets on this course site. FEFLOW® (Finite Element subsurface FLOW system) is a 3-D groundwater modeling software, developed by WASY, a German consulting firm. FEFLOW® uses the finite element method to solve 3D groundwater flow equations. RealOne™ Player software is required to run the .rm files found on this course site.

Subjects

D'arcy equation | D'arcy equation | flow nets | flow nets | mass conservation | mass conservation | the aquifer flow equation | the aquifer flow equation | heterogeneity and anisotropy | heterogeneity and anisotropy | storage properties | storage properties | regional circulation | regional circulation | unsaturated flow | unsaturated flow | recharge | recharge | stream-aquifer interaction | stream-aquifer interaction | well hydraulics | well hydraulics | flow through fractured rock | flow through fractured rock | numerical models | numerical models | groundwater quality | groundwater quality | contaminant transport processes | contaminant transport processes | dispersion | dispersion | decay | decay | adsorption | adsorption

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.310 Principles of Applied Mathematics (MIT) 18.310 Principles of Applied Mathematics (MIT)

Description

Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world. Principles of Applied Mathematics is a study of illustrative topics in discrete applied mathematics including sorting algorithms, information theory, coding theory, secret codes, generating functions, linear programming, game theory. There is an emphasis on topics that have direct application in the real world.

Subjects

sorting algorithms | sorting algorithms | information theory | information theory | coding theory | coding theory | secret codes | secret codes | generating functions | generating functions | linear programming | linear programming | game theory | game theory | discrete applied mathematics | discrete applied mathematics | mathematical analysis | mathematical analysis | sorting data | sorting data | efficient data storage | efficient data storage | efficient data transmission | efficient data transmission | error correction | error correction | secrecy | secrecy | Fast Fourier Transform | Fast Fourier Transform | network-flow problems | network-flow problems | mathematical economics | mathematical economics | statistics | statistics | probability theory | probability theory | combinatorics | combinatorics | linear algebra | linear algebra

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.59J Psycholinguistics (MIT) 9.59J Psycholinguistics (MIT)

Description

Central topics in language processing. The structure of language. Sentence processing. Discourse processing. Morphological processing. The storage and access of words in the mental dictionary. Speech processing. The relationship between the computational resources available in working memory and the language processing mechanism. Ambiguity resolution. Discussion of computational modeling, including connectionist models. The relationship between language and thought. Issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as self-paced reading, eye-tracking, cross-modal priming, and neural imaging methods. Central topics in language processing. The structure of language. Sentence processing. Discourse processing. Morphological processing. The storage and access of words in the mental dictionary. Speech processing. The relationship between the computational resources available in working memory and the language processing mechanism. Ambiguity resolution. Discussion of computational modeling, including connectionist models. The relationship between language and thought. Issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as self-paced reading, eye-tracking, cross-modal priming, and neural imaging methods.

Subjects

language processing | language processing | Language | Language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods. | neural imaging methods. | 9.59 | 9.59 | 24.905 | 24.905

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

Includes audio/video content: AV lectures. Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. Includes audio/video content: AV lectures. Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanotechnology | nanostructure | nanostructure | energy | energy | energy transport | energy transport | energy storage | energy storage | energy carriers | energy carriers | quantum mechanics | quantum mechanics | quantum physics | quantum physics | thermoelectrics | thermoelectrics | semiconductor physics | semiconductor physics | solar cells | solar cells | waves and particles | waves and particles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.781J Submicrometer and Nanometer Technology (MIT) 6.781J Submicrometer and Nanometer Technology (MIT)

Description

Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank

Subjects

submicron and nanometer structures | submicron and nanometer structures | optical and electron microscopy | optical and electron microscopy | Surface characterization | Surface characterization | preparation | preparation | and measurement techniques | and measurement techniques | Resist technology | Resist technology | optical projection | optical projection | interferometric | interferometric | X-ray | X-ray | ion | ion | and electron lithography | and electron lithography | Aqueous | Aqueous | and plasma etching techniques | and plasma etching techniques | Lift-off and electroplating | Lift-off and electroplating | Ion implantation | Ion implantation | microelectronics | microelectronics | microphotonics | microphotonics | information storage | information storage | and nanotechnology | and nanotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT) 2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.72 Groundwater Hydrology (MIT) 1.72 Groundwater Hydrology (MIT)

Description

This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations. This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.

Subjects

D'arcy equation | D'arcy equation | flow nets | flow nets | mass conservation | mass conservation | the aquifer flow equation | the aquifer flow equation | heterogeneity and anisotropy | heterogeneity and anisotropy | storage properties | storage properties | regional circulation | regional circulation | unsaturated flow | unsaturated flow | recharge | recharge | stream-aquifer interaction | stream-aquifer interaction | well hydraulics | well hydraulics | flow through fractured rock | flow through fractured rock | numerical models | numerical models | groundwater quality | groundwater quality | contaminant transport processes | contaminant transport processes | dispersion | dispersion | decay | decay | adsorption | adsorption

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.854 Introduction to Manufacturing Systems (MIT) 2.854 Introduction to Manufacturing Systems (MIT)

Description

This course provides students with ways of analyzing manufacturing systems in terms of material flow and storage, information flow, capacities, and times and durations of events. Fundamental topics covered include probability, inventory and queuing models, forecasting, optimization, process analysis, and linear and dynamic systems. This course also covers factory planning and scheduling topics including flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, and dynamic behavior of production systems. This course provides students with ways of analyzing manufacturing systems in terms of material flow and storage, information flow, capacities, and times and durations of events. Fundamental topics covered include probability, inventory and queuing models, forecasting, optimization, process analysis, and linear and dynamic systems. This course also covers factory planning and scheduling topics including flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, and dynamic behavior of production systems.

Subjects

manufacturing systems | manufacturing systems | material flow and storage | material flow and storage | statistics | statistics | queuing models | queuing models | production systems | production systems | flow planning | flow planning | probability | probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT) 2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included. This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | Fourier optics | probability | probability | stochastic processes | stochastic processes | light statistics | light statistics | theory of light coherence | theory of light coherence | van Cittert-Zernicke Theorem | van Cittert-Zernicke Theorem | statistical optics applications | statistical optics applications | inverse problems | inverse problems | information-theoretic views | information-theoretic views | information theory | information theory | 2.717 | 2.717 | MAS.857 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.243J Dynamics of Nonlinear Systems (MIT) 6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems. This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Subjects

nonlinear systems | nonlinear systems | deterministic dynamical systems | deterministic dynamical systems | ordinary differential equations | ordinary differential equations | planar autonomous systems | planar autonomous systems | Picard iteration | Picard iteration | contraction mapping theorem | contraction mapping theorem | Bellman-Gronwall lemma | Bellman-Gronwall lemma | Lyapunov methods | Lyapunov methods | feedback linearization | feedback linearization | nonlinear circuits | nonlinear circuits | control systems | control systems | local controllability | local controllability | volume evolution | volume evolution | system analysis | system analysis | singular perturbations | singular perturbations | averaging | averaging | local behavior | local behavior | trajectories | trajectories | equilibria | equilibria | storage functions | storage functions | stability analysis | stability analysis | continuity | continuity | differential equations | differential equations | system models | system models | parameters | parameters | input/output | input/output | state-space | state-space | 16.337 | 16.337

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy. This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.591J Language Processing (MIT) 9.591J Language Processing (MIT)

Description

This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations. This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations.

Subjects

language processing | language processing | language | language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods | neural imaging methods | 9.591 | 9.591 | 24.945 | 24.945

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.

Subjects

language processing | language processing | structure | structure | Sentence processing | Sentence processing | Discourse processing | Discourse processing | storage | storage | Morphological processing | Morphological processing | Ambiguity resolution | Ambiguity resolution | computational modeling | computational modeling | connectionist models | connectionist models | critical period | critical period | Speech acquisition | Speech acquisition | word acquisition | word acquisition | self-paced reading | self-paced reading | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | maging | maging | language acquisition | language acquisition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.626 Electrochemical Energy Systems (MIT) 10.626 Electrochemical Energy Systems (MIT)

Description

10.626 introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics. 10.626 introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subjects

energy | energy | electrochemical energy conversion | electrochemical energy conversion | electrochemical energy storage | electrochemical energy storage | transport phenomena | transport phenomena | diffuse charge | diffuse charge | Faradaic reactions | Faradaic reactions | statistical thermodynamics | statistical thermodynamics | phase transformations | phase transformations | rechargeable batteries | rechargeable batteries | fuel cells | fuel cells | supercapacitors | supercapacitors | solar cells | solar cells | desalination | desalination | electrokinetic energy conversion | electrokinetic energy conversion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.591J Language Processing (MIT) 9.591J Language Processing (MIT)

Description

This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations. This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations.

Subjects

language processing | language processing | language | language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods | neural imaging methods | 9.591 | 9.591 | 24.945 | 24.945

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.

Subjects

language processing | language processing | structure | structure | Sentence processing | Sentence processing | Discourse processing | Discourse processing | storage | storage | Morphological processing | Morphological processing | Ambiguity resolution | Ambiguity resolution | computational modeling | computational modeling | connectionist models | connectionist models | critical period | critical period | Speech acquisition | Speech acquisition | word acquisition | word acquisition | self-paced reading | self-paced reading | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | maging | maging | language acquisition | language acquisition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.S079 Nanomaker (MIT) 6.S079 Nanomaker (MIT)

Description

Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective

Subjects

clean energy | clean energy | energy sources | energy sources | energy storage | energy storage | energy consumption | energy consumption | photovoltaic | photovoltaic | piezoelectric | piezoelectric | thermoelectric | thermoelectric | LED | LED | light emitting diode | light emitting diode | organic LED | organic LED | analytical biology | analytical biology | analytical chemistry | analytical chemistry | microfluidics | microfluidics | spectrometer | spectrometer | energy efficiency | energy efficiency

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata