Searching for strain-life : 7 results found | RSS Feed for this search

3.35 Fracture and Fatigue (MIT) 3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components. Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | Linear elastic | elastic-plastic fracture mechanics | elastic-plastic fracture mechanics | Microstructural effects on fracture | Microstructural effects on fracture | Toughening mechanisms | Toughening mechanisms | Crack growth resistance | Crack growth resistance | creep fracture | creep fracture | Interface fracture mechanics | Interface fracture mechanics | Fatigue damage | Fatigue damage | dislocation substructures | dislocation substructures | Variable amplitude fatigue | Variable amplitude fatigue | Corrosion fatigue | Corrosion fatigue | experimental methods | experimental methods | microstructural effects | microstructural effects | metals | metals | ceramics | ceramics | polymers | polymers | thin films | thin films | biological materials | biological materials | composites | composites | single crystals | single crystals | stress-life | stress-life | strain-life | strain-life | structural components | structural components | bioimplant components | bioimplant components | microelectronic components | microelectronic components | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | fatigue cracks | susceptibility | cyclic loading | crack growth | crack propagation rate | endurance limit | predictive theories | damage accumulation theories | Manson-Coffin law | crack growth laws | ideal cumulative damage theory | fatigue data analysis | middle-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | linear P-S-N curves | non-linear P-S-N curves | service behaviour | time dependent loads | load spectrum | cycle counting | rain-flow cycle counting method | service behaviour fatigue test | analytical life estimation | damage accumulation | Palmgren-Miner linear damage accumulation hypothesis | strain | fatigue life | notch theory | strain-life diagram | weld imperfections | static strength | fatigue strength | cracks | porosity | inclusions | oxides | lack of penetration | weld shape | lack of fusion | geometric misalignment | arc strike | spatter | post-weld mechanical imperfections | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2405: Fatigue an Fracture in Aluminium Structures

Description

This lecture outlines modern fatigue design procedures and standards, the respective background information; it introduces fatigue design by testing; it presents fatigue data analysis and evaluation; it covers safety and reliability issues in aluminium design. This material has been utilized together with further definitions for classification of structural details to provide a proposal supported by the European Aluminium Association as a National Application Document, which may also be considered for introduction into the actual standard when this will be converted from an ENV to an EN.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | data analysis | design line | safety | reliability | partial safety factors | fatigue loading | fatigue strength | safety index | aluminium data bank | AlDaBa | damage tolerant design | ENV 1999-2 | life prediction procedure | sequence effects | strain-life approach | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | elastic-plastic fracture mechanics | Microstructural effects on fracture | Toughening mechanisms | Crack growth resistance | creep fracture | Interface fracture mechanics | Fatigue damage | dislocation substructures | Variable amplitude fatigue | Corrosion fatigue | experimental methods | microstructural effects | metals | ceramics | polymers | thin films | biological materials | composites | single crystals | stress-life | strain-life | structural components | bioimplant components | microelectronic components | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | fatigue cracks | susceptibility | cyclic loading | crack growth | crack propagation rate | endurance limit | predictive theories | damage accumulation theories | manson-coffin law | crack growth laws | ideal cumulative damage theory | fatigue data analysis | middle-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | linear p-s-n curves | non-linear p-s-n curves | service behaviour | time dependent loads | load spectrum | cycle counting | rain-flow cycle counting method | service behaviour fatigue test | analytical life estimation | damage accumulation | palmgren-miner linear damage accumulation hypothesis | strain | fatigue life | notch theory | strain-life diagram | weld imperfections | static strength | fatigue strength | cracks | porosity | inclusions | oxides | lack of penetration | weld shape | lack of fusion | geometric misalignment | arc strike | spatter | post-weld mechanical imperfections | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2405: Fatigue an Fracture in Aluminium Structures

Description

This lecture outlines modern fatigue design procedures and standards, the respective background information; it introduces fatigue design by testing; it presents fatigue data analysis and evaluation; it covers safety and reliability issues in aluminium design. This material has been utilized together with further definitions for classification of structural details to provide a proposal supported by the European Aluminium Association as a National Application Document, which may also be considered for introduction into the actual standard when this will be converted from an ENV to an EN.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | data analysis | design line | safety | reliability | partial safety factors | fatigue loading | fatigue strength | safety index | aluminium data bank | aldaba | damage tolerant design | env 1999-2 | life prediction procedure | sequence effects | strain-life approach | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | elastic-plastic fracture mechanics | Microstructural effects on fracture | Toughening mechanisms | Crack growth resistance | creep fracture | Interface fracture mechanics | Fatigue damage | dislocation substructures | Variable amplitude fatigue | Corrosion fatigue | experimental methods | microstructural effects | metals | ceramics | polymers | thin films | biological materials | composites | single crystals | stress-life | strain-life | structural components | bioimplant components | microelectronic components | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata