Searching for subsequences : 4 results found | RSS Feed for this search

18.100A Introduction to Analysis (MIT) 18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | mathematical analysis | estimations | estimations | limit of a sequence | limit of a sequence | limit theorems | limit theorems | subsequences | subsequences | cluster points | cluster points | infinite series | infinite series | power series | power series | local and global properties | local and global properties | continuity | continuity | intermediate-value theorem | intermediate-value theorem | convexity | convexity | integrability | integrability | Riemann integral | Riemann integral | calculus | calculus | convergence | convergence | Gamma function | Gamma function | Stirling | Stirling | quantifiers and negation | quantifiers and negation | Leibniz | Leibniz | Fubini | Fubini | improper integrals | improper integrals | Lebesgue integral | Lebesgue integral | mathematical proofs | mathematical proofs | differentiation | differentiation | integration | integrationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | estimations | limit of a sequence | limit theorems | subsequences | cluster points | infinite series | power series | local and global properties | continuity | intermediate-value theorem | convexity | integrability | Riemann integral | calculus | convergence | Gamma function | Stirling | quantifiers and negation | Leibniz | Fubini | improper integrals | Lebesgue integral | mathematical proofs | differentiation | integrationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is designed to introduce the student to the rigorous examination of the real number system and the foundations of calculus. Analysis lies at the heart of the trinity of higher mathematicsâ€”algebra, analysis, and topologyâ€”because it is where the other two fields meet. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Mathematics 241)Subjects

real number | set | operations | quantifiers | bounds | irrationals | absolute values | euclidean | vectors | metric | subsequences | cauchy sequences | series | limits | differentiation | integration | integral | interchange | Computer science | I100License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This is a module framework. It can be viewed online or downloaded as a zip file. As taught in 2007-2008 and 2009-2010. This module introduces mathematical analysis building upon the experience of limits of sequences and properties of real numbers and on calculus. It includes limits and continuity of functions between Euclidean spaces, differentiation and integration. A variety of very important new concepts are introduced by investigating the properties of numerous examples, and developing the associated theory, with a strong emphasis on rigorous proof. This module is suitable for study at undergraduate level 2. Dr Joel Feinstein, School of Mathematics Dr Joel Feinstein is an Associate Professor in Pure Mathematics at the University of Nottingham. After reading mathematics at Cambridge, heSubjects

mathematical analysis | ukoer | euclidean space topology | continuous differentiable | riemann integral | uniform convergence | convergent sequence | subsequences | sequential compactness | heine-borel theorem | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata