Searching for subsonic : 7 results found | RSS Feed for this search

16.120 Compressible Flow (MIT) 16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear. The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | compressible fluid dynamics | fluid dynamics | fluid dynamics | external flows | external flows | internal flows | internal flows | quasi-on-dimensional | quasi-on-dimensional | quasi-1D | quasi-1D | channel flow | channel flow | multi-dimensional flows | multi-dimensional flows | nozzles | nozzles | diffusers | diffusers | inlets | inlets | loss generation | loss generation | interactions | interactions | aerodynamic shapes | aerodynamic shapes | subsonic | subsonic | supersonic | supersonic | transonic | transonic | hypersonic | hypersonic | shock waves | shock waves | vortices | vortices | disturbance behavior | disturbance behavior | unsteady | unsteady | speed of sound | speed of sound | isentropic flows | isentropic flows | non-isentropic flows | non-isentropic flows | potential flows | potential flows | rotational flows | rotational flows | shaft work | shaft work | heat addition | heat addition | mass addition | mass addition | flow states | flow states | flow regime | flow regime | velocity non-uniformities | velocity non-uniformities | density non-uniformities | density non-uniformities | fluid system components | fluid system components | lift | lift | drag | drag | continuum flow | continuum flow | shock strength | shock strength | characteristics | characteristics | governing equations | governing equations | thermodynamic context | thermodynamic context | characteristic parameters | characteristic parameters | quasi-one-dimensional flow | quasi-one-dimensional flow | disturbances | disturbances | unsteady flow | unsteady flow | gas dynamic discontinuities | gas dynamic discontinuities | detonations | detonations | linear two-dimensional flows | linear two-dimensional flows | non-linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derivative | substantial derivative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.Subjects

aerodynamics | airflow | air | body | aircraft | aerodynamic modes | aero | forces | flow | computational | CFD | aerodynamic analysis | lift | drag | potential flows | imcompressible | supersonic | subsonic | panel method | vortex lattice method | boudary layer | transition | turbulence | inviscid | viscous | euler | navier-stokes | wind tunnel | flow similarity | non-dimensional | mach number | reynolds number | integral momentum | airfoil | wing | stall | friction drag | induced drag | wave drag | pressure drag | fluid element | shear strain | normal strain | vorticity | divergence | substantial derivative | laminar | displacement thickness | momentum thickness | skin friction | separation | velocity profile | 2-d panel | 3-d vortex | thin airfoil | lifting line | aspect ratio | twist | camber | wing loading | roll moments | finite volume approximation | shocks | expansion fans | shock-expansion theory | transonic | critical mach number | wing sweep | Kutta condition | team project | blended-wing-body | computational fluid dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | airflow | air | body | aircraft | aerodynamic modes | aero | forces | flow | computational | CFD | aerodynamic analysis | lift | drag | potential flows | imcompressible | supersonic | subsonic | panel method | vortex lattice method | boudary layer | transition | turbulence | inviscid | viscous | euler | navier-stokes | wind tunnel | flow similarity | non-dimensional | mach number | reynolds number | integral momentum | airfoil | wing | stall | friction drag | induced drag | wave drag | pressure drag | fluid element | shear strain | normal strain | vorticity | divergence | substantial derviative | laminar | displacement thickness | momentum thickness | skin friction | separation | velocity profile | 2-d panel | 3-d vortex | thin airfoil | lifting line | aspect ratio | twist | camber | wing loading | roll moments | finite volume approximation | shocks | expansion fans | shock-expansion theory | transonic | critical mach number | wing sweep | Kutta condition | team project | blended-wing-body | computational fluid dynamics | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata