Searching for synthetic biology : 16 results found | RSS Feed for this search

1

20.020 Introduction to Biological Engineering Design (MIT) 20.020 Introduction to Biological Engineering Design (MIT)

Description

Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology | machine design | machine design | hardware | hardware | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabrication | lathe | lathe | precision engineering | precision engineering | group project | group project | project management | project management | CAD | CAD | fatigue | fatigue | Gantt chart | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT) 7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT)

Description

What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an

Subjects

microorganisms | microorganisms | biomolecules | biomolecules | microbial systems | microbial systems | synthetic biology | synthetic biology | biofuels | biofuels | bioplastics | bioplastics | amino acids | amino acids | lysine | lysine | food additives | food additives | monosodium glutamate (MSG) | monosodium glutamate (MSG) | specialty chemicals | specialty chemicals | succinate | succinate | biopharmaceuticals | biopharmaceuticals | enzymes | enzymes | antibiotics and biocompatible materials | antibiotics and biocompatible materials | microbial biotechnology | microbial biotechnology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89J Topics in Computational and Systems Biology (MIT) 7.89J Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology.

Subjects

Computational Biology | Computational Biology | Systems Biology | Systems Biology | Genomics | Genomics | Protein Function | Protein Function | Nucleic Acid Binding Factors | Nucleic Acid Binding Factors | microarray analysis | microarray analysis | genome-wide mapping | genome-wide mapping | gene expression | gene expression | evolutionary dynamics | evolutionary dynamics | sequencing | sequencing | translation | translation | network motifs | network motifs | pathway modeling | pathway modeling | synthetic biology | synthetic biology | metagenomics | metagenomics | signal transduction | signal transduction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Systems and Synthetic Biology: How the Cell Solves Problems (MIT) 7.342 Systems and Synthetic Biology: How the Cell Solves Problems (MIT)

Description

A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this course, we will discuss the unifying principles that all organisms use to perform cellular functions. We will also discuss key challenges faced by a cell in both single and multi-cellular organisms. Finally, we will discuss how researchers in the field of synthetic biology are using the new knowledge gained from studying naturally-occurring biological systems to create artificial gene networks capable of performing new functions. This course is one of many A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this course, we will discuss the unifying principles that all organisms use to perform cellular functions. We will also discuss key challenges faced by a cell in both single and multi-cellular organisms. Finally, we will discuss how researchers in the field of synthetic biology are using the new knowledge gained from studying naturally-occurring biological systems to create artificial gene networks capable of performing new functions. This course is one of many

Subjects

systems biology | systems biology | synthetic biology | synthetic biology | cell | cell | cellular functions | cellular functions | biological systems | biological systems | artificial gene networks | artificial gene networks | molecular interactions | molecular interactions | molecular biology | molecular biology | genes | genes | RNA | RNA | proteins | proteins | macromolecules | macromolecules | intracellular biochemical interactions | intracellular biochemical interactions | extracellular molecules | extracellular molecules | gene expression | gene expression | stochastic gene expression | stochastic gene expression

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Designing Biotechnology

Description

James King, Lead Designer, Science Practice Ltd. gives a talk on Synthetic Biology - a new approach to genetics which applies engineering principles to biology in the hope of creating medicines, fuels, foods and other useful products. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

science | ethics | philosophy | synthetic biology | bioethics | science | ethics | philosophy | synthetic biology | bioethics | 2011-05-11

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129094/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.355J The Anthropology of Biology (MIT) 21A.355J The Anthropology of Biology (MIT)

Description

If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif

Subjects

synthetic biology | synthetic biology | genetics | genetics | Charles Darwin | Charles Darwin | evolution | evolution | eugenics | eugenics | bioprospecting | bioprospecting | ethics | ethics | biodiversity | biodiversity | race | race | molecular biology | molecular biology | sociology of science | sociology of science | construction of identity | construction of identity | intersex | intersex | biotechnology | biotechnology | narratives and metaphors | narratives and metaphors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.18 Biomolecular Feedback Systems (MIT) 2.18 Biomolecular Feedback Systems (MIT)

Description

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control. This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subjects

biomolecular feedback systems | biomolecular feedback systems | systems biology | systems biology | modeling | modeling | feedback | feedback | cell | cell | system | system | control | control | dynamical | dynamical | input/output | input/output | synthetic biology | synthetic biology | techniques | techniques | transcription | transcription | translation | translation | transcriptional regulation | transcriptional regulation | post-transcriptional regulation | post-transcriptional regulation | cellular subsystems | cellular subsystems | dynamic behavior | dynamic behavior | analysis | analysis | equilibrium | equilibrium | robustness | robustness | oscillatory behavior | oscillatory behavior | bifurcations | bifurcations | model reduction | model reduction | stochastic | stochastic | biochemical | biochemical | simulation | simulation | linear | linear | circuit | circuit | design | design | biological circuit design | biological circuit design | negative autoregulation | negative autoregulation | toggle switch | toggle switch | repressilator | repressilator | activator-repressor clock | activator-repressor clock | IFFL | IFFL | incoherent feedforward loop | incoherent feedforward loop | bacterial chemotaxis | bacterial chemotaxis | interconnecting components | interconnecting components | modularity | modularity | retroactivity | retroactivity | gene circuit | gene circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.355J The Anthropology of Biology (MIT)

Description

If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif

Subjects

synthetic biology | genetics | Charles Darwin | evolution | eugenics | bioprospecting | ethics | biodiversity | race | molecular biology | sociology of science | construction of identity | intersex | biotechnology | narratives and metaphors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.355J The Anthropology of Biology (MIT)

Description

If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif

Subjects

synthetic biology | genetics | Charles Darwin | evolution | eugenics | bioprospecting | ethics | biodiversity | race | molecular biology | sociology of science | construction of identity | intersex | biotechnology | narratives and metaphors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.18 Biomolecular Feedback Systems (MIT)

Description

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subjects

biomolecular feedback systems | systems biology | modeling | feedback | cell | system | control | dynamical | input/output | synthetic biology | techniques | transcription | translation | transcriptional regulation | post-transcriptional regulation | cellular subsystems | dynamic behavior | analysis | equilibrium | robustness | oscillatory behavior | bifurcations | model reduction | stochastic | biochemical | simulation | linear | circuit | design | biological circuit design | negative autoregulation | toggle switch | repressilator | activator-repressor clock | IFFL | incoherent feedforward loop | bacterial chemotaxis | interconnecting components | modularity | retroactivity | gene circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | chemistry | synthetic biology | project | biotech | genetic engineering | GMO | ethics | biomedical ethics | genetics | recombinant DNA | DNA | gene sequencing | gene synthesis | biohacking | computational biology | iGEM | BioBrick | systems biology | machine design | hardware | machine element | design process | design layout | prototype | mechanism | engineering | fabrication | lathe | precision engineering | group project | project management | CAD | fatigue | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT)

Description

What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an

Subjects

microorganisms | biomolecules | microbial systems | synthetic biology | biofuels | bioplastics | amino acids | lysine | food additives | monosodium glutamate (MSG) | specialty chemicals | succinate | biopharmaceuticals | enzymes | antibiotics and biocompatible materials | microbial biotechnology | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89J Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology.

Subjects

Computational Biology | Systems Biology | Genomics | Protein Function | Nucleic Acid Binding Factors | microarray analysis | genome-wide mapping | gene expression | evolutionary dynamics | sequencing | translation | network motifs | pathway modeling | synthetic biology | metagenomics | signal transduction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Systems and Synthetic Biology: How the Cell Solves Problems (MIT)

Description

A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this course, we will discuss the unifying principles that all organisms use to perform cellular functions. We will also discuss key challenges faced by a cell in both single and multi-cellular organisms. Finally, we will discuss how researchers in the field of synthetic biology are using the new knowledge gained from studying naturally-occurring biological systems to create artificial gene networks capable of performing new functions. This course is one of many

Subjects

systems biology | synthetic biology | cell | cellular functions | biological systems | artificial gene networks | molecular interactions | molecular biology | genes | RNA | proteins | macromolecules | intracellular biochemical interactions | extracellular molecules | gene expression | stochastic gene expression

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.020 Introduction to Biological Engineering Design (MIT)

Description

This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are i

Subjects

biology | chemistry | synthetic biology | project | biotech | genetic engineering | GMO | ethics | biomedical ethics | genetics | recombinant DNA | DNA | gene sequencing | gene synthesis | biohacking | computational biology | iGEM | BioBrick | systems biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata