Searching for temperatures : 22 results found | RSS Feed for this search

1

TALAT Lecture 2205: Special Design Issues

Description

This lecture describes the measurement and amount of residual stresses in extruded and welded profiles which have to be accounted for in design; it introduces the subject of corrosion and of preventive design measures; it describes the behavior and properties of structural aluminium alloys at ambient, low and elevated temperatures; it gives useful examples of structural applications of extrusions. Background in mechanical and structural engineering disciplines is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | structural design | residual stresses | extruded profiles | welded profiles | fatigue behaviour | corrosion | galvanic corrosion | differential aeration corrosion | working temperature | mechanical properties | linear thermal expansion | low temperatures | elevated temperatures | extrusion | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT) 22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects. This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.

Subjects

nuclear power plant systems | nuclear power plant systems | structure | structure | function | function | operating conditions | operating conditions | and mechanical-structural design requirements | and mechanical-structural design requirements | modeling | modeling | component design | component design | mechanical loading | mechanical loading | brittle fracture | brittle fracture | inelastic behavior | inelastic behavior | elevated temperatures | elevated temperatures | neutron irradiation | neutron irradiation | seismic effects | seismic effects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2205: Special Design Issues

Description

This lecture describes the measurement and amount of residual stresses in extruded and welded profiles which have to be accounted for in design; it introduces the subject of corrosion and of preventive design measures; it describes the behavior and properties of structural aluminium alloys at ambient, low and elevated temperatures; it gives useful examples of structural applications of extrusions. Background in mechanical and structural engineering disciplines is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | structural design | residual stresses | extruded profiles | welded profiles | fatigue behaviour | corrosion | galvanic corrosion | differential aeration corrosion | working temperature | mechanical properties | linear thermal expansion | low temperatures | elevated temperatures | extrusion | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Icicles on the Launch Tower Icicles on the Launch Tower

Description

Subjects

ice | ice | putty | putty | et | et | challenger | challenger | srb | srb | externaltank | externaltank | sts51l | sts51l | solidrocketbooster | solidrocketbooster | coldtemperatures | coldtemperatures | oringseal | oringseal

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1501: Properties, Characteristics and Alloys of Aluminium

Description

This lecture provides a survey of the aluminium alloys available to the user; it describes their various properties; it gives an insight into the choice of aluminium for a proposed application. In the context of this lecture not every individual alloy and its properties have been treated in detail, but rather divided into alloy types with reference to the most commonly used alloys. For further details on alloy properties the reader is referred to available databanks like ALUSELECT of the European Aluminium Association (EAA) or to the European and national materials standards. Good engineering background in materials, design and manufacturing processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | properties | selection criteria | production | industry | recycled aluminium | secondary aluminium | atomic structure | crystal structure | density | electrical conductivity | resistivity | thermal conductivity | reflectance | non-magnetic | emissivity | corrosion resistance | thermal expansion | melting temperature | latent heat | specific heat | identification | aluminium - copper alloys | aluminium - manganese alloys | aluminium - silicon alloys | aluminium - magnesium alloys | aluminium - magnesium - silicon alloys | aluminium - zinc - magnesium alloys | aluminium - zinc - magnesium - copper alloys | ingot | casting | work hardening | dispersion hardening | solid solution hardening | precipitation hardening | temper designations | non heat-treatable alloys | heat-treatable alloys | applications | mechanical properties | tensile strength | strength/weight ratio | proof stress | elastic properties | elongation | compression | bearing | shear | hardness | ductility | creep | impact strength | elevated temperatures | low temperatures | fracture characteristics | fatigue | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2502: Material Aspects of Fire Design

Description

This lecture gives information about characteristic behaviour of aluminium alloys and insulation materials at high temperatures; it describes the philosophy of using aluminium alloy structures under risks of fire; it gives an example of fire risk analysis. General engineering background and some familiarity with TALAT lecture 2501 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fire resistance | high temperatures | physical properties | mechanical properties | insulation materials | rockwool | ceramic fibres | calcium silicate boards | gypsum boards | intumescent materials | spray-on cement based materials | microtherm | risk analysis | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2503: Calculation Methods for Fire Design

Description

This lecture gives information on how to calculate the fire resistance of aluminium alloy structures with and without applied insulation. General engineering background and some familiarity with TALAT lectures 2501 and 2502 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fire resistance | calculation methods | env 1999-1-2 | elevated temperatures | tension members | beams | columns | connections | temperature analysis | unprotected aluminium structures | protected aluminium structures | uninsulated aluminium structures | insulated aluminium structures | insulation techniques | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3300: Fundamentals of Metal Forming

Description

This lecture gives a brief review of the fundamental terms and laws governing metal forming at room temperature as well as at high temperatures. This lecture is a necessary prerequisite to understand the more specific treatment of metal forming subjects such as forging, impact extrusion and sheet metal forming in the subsequent TALAT This lectures 3400 to 3800. General background in production engineering, machine tools is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | classification | state of stress | type of raw material | forming temperature | induction of forces | flow stress | plastic strain | logarithmic plastic strain | logarithmic strain in upsetting | law of volume constancy | plastic strain rate | plastic strain acceleration | plastic flow | maximum shear stress | von mises flow criterion | yield criteria for plane stress | yield locus | law of plastic flow | flow curves | room temperature | elevated temperatures | average flow stress | forming energy | heat development | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3401: Forging Alloys

Description

This lecture helps to understand how the properties of forgings evolve during the manufacturing process. General understanding of metallurgy and deformation processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | forging | wrought alloys | non-heat-treatable | heat-treatable | strain hardening | solid solution hardening | particle hardening | microstructure | fiber structure | non-uniform flow | defects | characteristic temperatures | mechanical properties | forging temperature | die temperature | forming rate | flow stress | friction | lubrication | heat treatment | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1401: Aluminium Powder Metallurgy

Description

This lecture outlines the differences between conventionally produced and powder metallurgy aluminium with respect to potential uses; it aims at learning about the various processes to produce and to consolidate alloy powders; it illustrates the extension of the useful property range beyond that of limits of conventionally processed aluminium alloys; it explains the advantages and disadvantages of aluminium produced by powder metallurgy; it shows the potential of aluminium produced by the route of powder metallurgy. Knowledge in metallurgy, materials science, materials engineering is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | advanced materials | powder fabrication | rapid solidification | caracterisation | powder | precompaction | cold compaction | sintering | hot consolidation | post consolidation | spray forming | P/M 7 XXX alloys | high strength alloys | elevated temperatures | mechanical alloying | high modulus | safety | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2502: Material Aspects of Fire Design

Description

This lecture gives information about characteristic behaviour of aluminium alloys and insulation materials at high temperatures; it describes the philosophy of using aluminium alloy structures under risks of fire; it gives an example of fire risk analysis. General engineering background and some familiarity with TALAT lecture 2501 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fire resistance | high temperatures | physical properties | mechanical properties | insulation materials | rockwool | ceramic fibres | calcium silicate boards | gypsum boards | intumescent materials | spray-on cement based materials | microtherm | risk analysis | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2503: Calculation Methods for Fire Design

Description

This lecture gives information on how to calculate the fire resistance of aluminium alloy structures with and without applied insulation. General engineering background and some familiarity with TALAT lectures 2501 and 2502 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fire resistance | calculation methods | ENV 1999-1-2 | elevated temperatures | tension members | beams | columns | connections | temperature analysis | unprotected aluminium structures | protected aluminium structures | uninsulated aluminium structures | insulated aluminium structures | insulation techniques | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3300: Fundamentals of Metal Forming

Description

This lecture gives a brief review of the fundamental terms and laws governing metal forming at room temperature as well as at high temperatures. This lecture is a necessary prerequisite to understand the more specific treatment of metal forming subjects such as forging, impact extrusion and sheet metal forming in the subsequent TALAT This lectures 3400 to 3800. General background in production engineering, machine tools is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | classification | state of stress | type of raw material | forming temperature | induction of forces | flow stress | plastic strain | logarithmic plastic strain | logarithmic strain in upsetting | law of volume constancy | plastic strain rate | plastic strain acceleration | plastic flow | maximum shear stress | von Mises flow criterion | yield criteria for plane stress | yield locus | law of plastic flow | flow curves | room temperature | elevated temperatures | average flow stress | forming energy | heat development | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3401: Forging Alloys

Description

This lecture helps to understand how the properties of forgings evolve during the manufacturing process. General understanding of metallurgy and deformation processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | forging | wrought alloys | non-heat-treatable | heat-treatable | strain hardening | solid solution hardening | particle hardening | microstructure | fiber structure | non-uniform flow | defects | characteristic temperatures | mechanical properties | forging temperature | die temperature | forming rate | flow stress | friction | lubrication | heat treatment | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.

Subjects

nuclear power plant systems | structure | function | operating conditions | and mechanical-structural design requirements | modeling | component design | mechanical loading | brittle fracture | inelastic behavior | elevated temperatures | neutron irradiation | seismic effects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings | 16.01 | 16.02 | 16.03 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1401: Aluminium Powder Metallurgy

Description

This lecture outlines the differences between conventionally produced and powder metallurgy aluminium with respect to potential uses; it aims at learning about the various processes to produce and to consolidate alloy powders; it illustrates the extension of the useful property range beyond that of limits of conventionally processed aluminium alloys; it explains the advantages and disadvantages of aluminium produced by powder metallurgy; it shows the potential of aluminium produced by the route of powder metallurgy. Knowledge in metallurgy, materials science, materials engineering is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | advanced materials | powder fabrication | rapid solidification | caracterisation | powder | precompaction | cold compaction | sintering | hot consolidation | post consolidation | spray forming | p/m 7 xxx alloys | high strength alloys | elevated temperatures | mechanical alloying | high modulus | safety | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata