Searching for thesis : 383 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7.343 Photosynthesis: Life from Light (MIT) 7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | photosynthesis | life from light | life from light | conversion | conversion | solar energy | solar energy | chemical energy | chemical energy | biogeochemical cycles | biogeochemical cycles | global warming | global warming | physical | physical | chemical and biological reactions | chemical and biological reactions | light harvesting | light harvesting | photochemistry | photochemistry | protein complexes | protein complexes | synthesis of ATP | synthesis of ATP | reduction of CO2 | reduction of CO2 | carbohydrates | carbohydrates | light-driven proton pumps | light-driven proton pumps | anoxygenic photosynthesis | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.512 Synthetic Organic Chemistry II (MIT) 5.512 Synthetic Organic Chemistry II (MIT)

Description

This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds. This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.

Subjects

synthetic organic chemistry | synthetic organic chemistry | synthesis | synthesis | complex organic molecules | complex organic molecules | stereoselective synthesis | stereoselective synthesis | acyclic compounds | acyclic compounds | stereocontrolled synthesis | stereocontrolled synthesis | stereocontrolled alkylation | stereocontrolled alkylation | stereocontrolled conjugate addition | stereocontrolled conjugate addition | carbonyls | carbonyls | aldol reactions | aldol reactions | carbonyl reduction | carbonyl reduction | alkene reduction | alkene reduction | hydroboration | hydroboration | dihydroxylation | dihydroxylation | epoxidation | epoxidation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.06 Cell Biology (MIT) 7.06 Cell Biology (MIT)

Description

This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis. This course deals with the biology of cells of higher organisms: The structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; chromatin structure and RNA synthesis.

Subjects

Biology | Biology | cells | cells | organisms | organisms | biosynthesis | biosynthesis | cellular membranes | cellular membranes | organelles | organelles | cell growth | cell growth | oncogenic transformation | oncogenic transformation | transport | transport | receptors | receptors | cell signaling | cell signaling | cytoskeleton | cytoskeleton | extracellular matrix | extracellular matrix | matrix | matrix | cell movements | cell movements | chromatin | chromatin | RNA | RNA | RNA synthesis | RNA synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.THT Undergraduate Thesis Tutorial (MIT) 22.THT Undergraduate Thesis Tutorial (MIT)

Description

This course is a series of lectures on prospectus and thesis writing. It is a required course for undergraduate Nuclear Science and Engineering majors, taken during the fall semester of their senior year. Students select a thesis topic and a thesis advisor who reviews and approves the prospectus for thesis work in the subsequent spring term. This course is a series of lectures on prospectus and thesis writing. It is a required course for undergraduate Nuclear Science and Engineering majors, taken during the fall semester of their senior year. Students select a thesis topic and a thesis advisor who reviews and approves the prospectus for thesis work in the subsequent spring term.

Subjects

senior thesis | senior thesis | scholarly publishing | scholarly publishing | academic writing | academic writing | prospectus | prospectus | elevator pitch | elevator pitch | citations | citations | bibliography | bibliography | hypothesis | hypothesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT. This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT.

Subjects

hypothesis testing | hypothesis testing | hypothesis estimation | hypothesis estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlation | decision theory | decision theory | Bayesian statistics | Bayesian statistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT) 5.13 Organic Chemistry II (MIT)

Description

This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry. This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.

Subjects

intermediate organic chemistry | intermediate organic chemistry | organic molecules | organic molecules | stereochemistry | stereochemistry | reaction mechanisms | reaction mechanisms | synthesis of organic compounds | synthesis of organic compounds | synthesis | synthesis | structure determination | structure determination | mechanism | mechanism | reactivity | reactivity | functional groups | functional groups | NMR | NMR | spectroscopy | spectroscopy | spectrometry | spectrometry | structure elucidation | structure elucidation | infrared spectroscopy | infrared spectroscopy | nuclear magnetic resonance spectroscopy | nuclear magnetic resonance spectroscopy | reactive intermediates | reactive intermediates | carbocations | carbocations | radicals | radicals | aromaticity | aromaticity | conjugated systems | conjugated systems | molecular orbital theory | molecular orbital theory | pericyclic reactions | pericyclic reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.310 Laboratory Chemistry (MIT) 5.310 Laboratory Chemistry (MIT)

Description

Laboratory Chemistry (5.310) introduces experimental chemistry for students requiring a chemistry laboratory who are not majoring in chemistry. Students must have completed general chemistry (5.111) and have completed or be concurrently enrolled in the first semester of organic chemistry (5.12). The course covers principles and applications of chemical laboratory techniques, including preparation and analysis of chemical materials, measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, kinetics, data analysis, and elementary synthesis. NOTE: The Staff for this course would like to acknowledge that the experiments include contributions from past instructors, course textbooks, and others affiliated with course #5.310. Since the Laboratory Chemistry (5.310) introduces experimental chemistry for students requiring a chemistry laboratory who are not majoring in chemistry. Students must have completed general chemistry (5.111) and have completed or be concurrently enrolled in the first semester of organic chemistry (5.12). The course covers principles and applications of chemical laboratory techniques, including preparation and analysis of chemical materials, measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, kinetics, data analysis, and elementary synthesis. NOTE: The Staff for this course would like to acknowledge that the experiments include contributions from past instructors, course textbooks, and others affiliated with course #5.310. Since the

Subjects

lab | lab | chemistry | chemistry | laboratory | laboratory | experiment | experiment | pH | pH | gas chromatography | gas chromatography | liquid chromatography | liquid chromatography | visible-ultraviolet spectrophotometry | visible-ultraviolet spectrophotometry | infrared spectroscopy | infrared spectroscopy | kinetics | kinetics | data analysis | data analysis | elementary synthesis | elementary synthesis | amino acid | amino acid | ferrocene | ferrocene | essential oil | essential oil | potentiometric titration | potentiometric titration | techniques | techniques | measurement | measurement | materials | materials | data | data | analysis | analysis | elementary | elementary | synthesis | synthesis | amino | amino | acid | acid | essential | essential | oil | oil | gas | gas | chromatography | chromatography | infrared | infrared | spectroscopy | spectroscopy | liquid | liquid | potentiometric | potentiometric | titration | titration | visible | visible | ultraviolet | ultraviolet | spectrophotometry | spectrophotometry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT) 5.13 Organic Chemistry II (MIT)

Description

5.13 is an intermediate organic chemistry course that deals primarily with synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry are included to illustrate the role of organic chemistry in biological systems, medicine, and in the chemical industry. 5.13 is an intermediate organic chemistry course that deals primarily with synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry are included to illustrate the role of organic chemistry in biological systems, medicine, and in the chemical industry.

Subjects

intermediate organic chemistry | intermediate organic chemistry | organic | organic | organic molecules | organic molecules | stereochemistry | stereochemistry | reaction mechanisms | reaction mechanisms | synthesis of organic compounds | synthesis of organic compounds | synthesis | synthesis | structure determination | structure determination | mechanism | mechanism | structure | structure | reactivity | reactivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.914 Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders (MIT) 9.914 Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders (MIT)

Description

An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32. An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.

Subjects

Brain and Cognitive Sciences | Brain and Cognitive Sciences | Bipolar Disorder | Bipolar Disorder | Psychosis | Psychosis | Schizophrenia | Schizophrenia | Genetics of Psychiatric Disorder | Genetics of Psychiatric Disorder | DISC1 | DISC1 | Ca++ Signaling | Ca++ Signaling | Depression | Depression | Lithium and GSK3 Hypothesis | Lithium and GSK3 Hypothesis | Behavioral Assays | Behavioral Assays | Depressive Behaviors | Depressive Behaviors | The GABA System-I | The GABA System-I | The GABA System-II | The GABA System-II | The Glutamate Hypothesis of Schizophrenia | The Glutamate Hypothesis of Schizophrenia | DARPP32 | DARPP32 | Genetics | Genetics | Neurobiology | Neurobiology | Pathophysiology | Pathophysiology | Psychiatry | Psychiatry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course provides a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. The course topics include hypothesis testing and estimation. It also includes confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, and correlation. This course provides a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. The course topics include hypothesis testing and estimation. It also includes confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, and correlation.

Subjects

hypothesis testing and estimation; confidence intervals; chi-square tests; nonparametric statistics; analysis of variance; regression; correlation | hypothesis testing and estimation; confidence intervals; chi-square tests; nonparametric statistics; analysis of variance; regression; correlation | hypothesis testing and estimation | hypothesis testing and estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics.

Subjects

hypothesis testing | hypothesis testing | hypothesis estimation | hypothesis estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlation | decision theory | decision theory | Bayesian statistics | Bayesian statistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.569 Synthesis of Polymers (MIT) 10.569 Synthesis of Polymers (MIT)

Description

Studies synthesis of polymeric materials, emphasizing interrelationships of chemical pathways, process conditions, and microarchitecture of molecules produced. Chemical pathways include traditional approaches such as anionic polymerization, radical condensation, and ring-opening polymerizations. Other techniques are discussed, including stable free radical polymerizations and atom transfer free radical polymerizations (ARTP), catalytic approaches to well-defined architectures, and polymer functionalization in bulk and at surfaces. Process conditions include bulk, solution, emulsion, suspension, gas phase, and batch vs. continuous fluidized bed. Microarchitecture includes tacticity, molecular-weight distribution, sequence distributions in copolymers, errors in chains such as branches, head- Studies synthesis of polymeric materials, emphasizing interrelationships of chemical pathways, process conditions, and microarchitecture of molecules produced. Chemical pathways include traditional approaches such as anionic polymerization, radical condensation, and ring-opening polymerizations. Other techniques are discussed, including stable free radical polymerizations and atom transfer free radical polymerizations (ARTP), catalytic approaches to well-defined architectures, and polymer functionalization in bulk and at surfaces. Process conditions include bulk, solution, emulsion, suspension, gas phase, and batch vs. continuous fluidized bed. Microarchitecture includes tacticity, molecular-weight distribution, sequence distributions in copolymers, errors in chains such as branches, head-

Subjects

polymer synthesis | polymer synthesis | step growth polymerization | step growth polymerization | free radical chain polymerization | free radical chain polymerization | anionic polymerization | anionic polymerization | cationic polymerization | cationic polymerization | ring-opening polymerization | ring-opening polymerization | ring opening metathesis polymerization (ROMP) | ring opening metathesis polymerization (ROMP) | atom transfer free radical polymerization (ATRP) | atom transfer free radical polymerization (ATRP) | functionalization | functionalization | stable free radical polymerization | stable free radical polymerization | dendrimers | dendrimers | Kevlar | Kevlar | Nylon | Nylon | Teflon | Teflon | DuPont | DuPont | hydrogen bonding | hydrogen bonding | initiators | initiators | iniferter | iniferter | ionic polymerizatioin | ionic polymerizatioin | organic chemistry | organic chemistry | inorganic chemistry | inorganic chemistry | emulsion polymerization | emulsion polymerization | Rempp | Rempp | Merrill | Merrill

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.782 Environmental Engineering Masters of Engineering Project (MIT) 1.782 Environmental Engineering Masters of Engineering Project (MIT)

Description

This class is one of the core requirements for the Environmental Masters of Engineering program. It is designed to teach about environmental engineering through the use of case studies, computer software tools, and seminars from industrial experts. Case studies provide the basis for group projects as well as individual theses. Past case studies have included the MMR Superfund site on Cape Cod; restoration of the Florida Everglades; dredging of Boston Harbor; local watershed trading programs; appropriate wastewater treatment technology for Brazil; point-of-use water treatment for Nepal, Brownfields Development in Providence, RI, and water resource planning for the island of Cyprus. This class spans the entire academic year: students must register for the Fall term, IAP, and the Spring term. This class is one of the core requirements for the Environmental Masters of Engineering program. It is designed to teach about environmental engineering through the use of case studies, computer software tools, and seminars from industrial experts. Case studies provide the basis for group projects as well as individual theses. Past case studies have included the MMR Superfund site on Cape Cod; restoration of the Florida Everglades; dredging of Boston Harbor; local watershed trading programs; appropriate wastewater treatment technology for Brazil; point-of-use water treatment for Nepal, Brownfields Development in Providence, RI, and water resource planning for the island of Cyprus. This class spans the entire academic year: students must register for the Fall term, IAP, and the Spring term.

Subjects

civil engineering; environmental engineering; professional practice; methodology; thesis; proposal; yonder; geotechnical data; water treatment; aquifer; groundwater; hydrology; Chattahoochee; Tennessee; US Virgin Islands; pollution; contaminants; drinking water | civil engineering; environmental engineering; professional practice; methodology; thesis; proposal; yonder; geotechnical data; water treatment; aquifer; groundwater; hydrology; Chattahoochee; Tennessee; US Virgin Islands; pollution; contaminants; drinking water | civil engineering | civil engineering | environmental engineering | environmental engineering | professional practice | professional practice | methodology | methodology | thesis | thesis | proposal | proposal | yonder | yonder | geotechnical data | geotechnical data | water treatment | water treatment | aquifer | aquifer | groundwater | groundwater | hydrology | hydrology | Chattahoochee | Chattahoochee | Tennessee | Tennessee | US Virgin Islands | US Virgin Islands | pollution | pollution | contaminants | contaminants | drinking water | drinking water

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.632 Conversational Computer Systems (MIT) MAS.632 Conversational Computer Systems (MIT)

Description

This class explores interaction with mobile computing systems and telephones by voice, including speech synthesis, recognition, digital recording, and browsing recorded speech. Emphasis on human interface design issues and interaction techniques appropriate for cognitive requirements of speech. Topics include human speech production and perception, speech recognition and text-to-speech algorithms, telephone networks, and spatial and time-compressed listening. Extensive reading from current research literature. This class explores interaction with mobile computing systems and telephones by voice, including speech synthesis, recognition, digital recording, and browsing recorded speech. Emphasis on human interface design issues and interaction techniques appropriate for cognitive requirements of speech. Topics include human speech production and perception, speech recognition and text-to-speech algorithms, telephone networks, and spatial and time-compressed listening. Extensive reading from current research literature.

Subjects

digital voice | digital voice | voice synthesis | voice synthesis | speech synthesis | speech synthesis | digital speech | digital speech | audio | audio | coding | coding | noise | noise | comprehension | comprehension | audio browsing | audio browsing | voice messaging | voice messaging | voice recognition | voice recognition | call center | call center | voice response | voice response | computer voice | computer voice | computer speech | computer speech | telephony | telephony | mobile applications | mobile applications | voicemail | voicemail

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT. This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT.

Subjects

hypothesis testing | hypothesis testing | hypothesis estimation | hypothesis estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlation | decision theory | decision theory | Bayesian statistics | Bayesian statistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.THA Undergraduate Thesis for Course 2-A (MIT) 2.THA Undergraduate Thesis for Course 2-A (MIT)

Description

This course is taken by mechanical engineering majors during their senior year to prepare a detailed thesis proposal under the guidance of staff from the Writing Program. The thesis proposal must bear the endorsement of the thesis supervisor and indicate the number of units planned. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course is taken by mechanical engineering majors during their senior year to prepare a detailed thesis proposal under the guidance of staff from the Writing Program. The thesis proposal must bear the endorsement of the thesis supervisor and indicate the number of units planned. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

thesis | thesis | writing | writing | mechanical engineering | mechanical engineering | technical writing | technical writing | scientific writing | scientific writing | thesis proposal | thesis proposal

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.512 Synthetic Organic Chemistry II (MIT)

Description

This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.

Subjects

synthetic organic chemistry | synthesis | complex organic molecules | stereoselective synthesis | acyclic compounds | stereocontrolled synthesis | stereocontrolled alkylation | stereocontrolled conjugate addition | carbonyls | aldol reactions | carbonyl reduction | alkene reduction | hydroboration | dihydroxylation | epoxidation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | life from light | conversion | solar energy | chemical energy | biogeochemical cycles | global warming | physical | chemical and biological reactions | light harvesting | photochemistry | protein complexes | synthesis of ATP | reduction of CO2 | carbohydrates | light-driven proton pumps | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | life from light | conversion | solar energy | chemical energy | biogeochemical cycles | global warming | physical | chemical and biological reactions | light harvesting | photochemistry | protein complexes | synthesis of ATP | reduction of CO2 | carbohydrates | light-driven proton pumps | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.512 Synthetic Organic Chemistry II (MIT)

Description

This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.

Subjects

synthetic organic chemistry | synthesis | complex organic molecules | stereoselective synthesis | acyclic compounds | stereocontrolled synthesis | stereocontrolled alkylation | stereocontrolled conjugate addition | carbonyls | aldol reactions | carbonyl reduction | alkene reduction | hydroboration | dihydroxylation | epoxidation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 A Love-Hate Relationship: Cholesterol in Health and Disease (MIT) 7.343 A Love-Hate Relationship: Cholesterol in Health and Disease (MIT)

Description

In this class, we will examine cholesterol's role in the cell and in the body as a whole, from its function as a structural component of the membrane to its function in signaling. We will discuss mechanisms of cholesterol sensing, mechanisms of feedback regulation in cells, cholesterol in the brain, cholesterol in the circulation, 'good cholesterol' and 'bad cholesterol,' cholesterol-related human disorders, and the drugs that deal with some of these disorders. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanc In this class, we will examine cholesterol's role in the cell and in the body as a whole, from its function as a structural component of the membrane to its function in signaling. We will discuss mechanisms of cholesterol sensing, mechanisms of feedback regulation in cells, cholesterol in the brain, cholesterol in the circulation, 'good cholesterol' and 'bad cholesterol,' cholesterol-related human disorders, and the drugs that deal with some of these disorders. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanc

Subjects

cholesterol | cholesterol | biosynthesis | biosynthesis | LDL | LDL | HDL | HDL | Smith-Lemli-Opitz Syndrome | Smith-Lemli-Opitz Syndrome | uptake | uptake | endocytosis | endocytosis | hypercholesterolemia | hypercholesterolemia | atherosclerosis | atherosclerosis | plaque | plaque | statins | statins | HMG-CoA | HMG-CoA | ezetimibe | ezetimibe | heart attack | heart attack | lipoprotein | lipoprotein | Fibrates | Fibrates | receptor | receptor | alzheimer's | alzheimer's

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.33 Advanced Chemical Experimentation and Instrumentation (MIT) 5.33 Advanced Chemical Experimentation and Instrumentation (MIT)

Description

5.33 focuses on advanced experimentation, with particular emphasis on chemical synthesis and the fundamentals of quantum chemistry, illustrated through molecular spectroscopy. The written and oral presentation of experimental results is also emphasized in the course.WARNING NOTICE:The experiments described in these materials are potentially hazardous andrequire a high level of safety training, special facilities and equipment, and supervision by appropriateindividuals. You bear the sole responsibility, liability, and risk for the implementation of such safetyprocedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementationof any of the material presented.Legal Notice<br clear="all&gt;&lt;br clear=" all="all" /> 5.33 focuses on advanced experimentation, with particular emphasis on chemical synthesis and the fundamentals of quantum chemistry, illustrated through molecular spectroscopy. The written and oral presentation of experimental results is also emphasized in the course.WARNING NOTICE:The experiments described in these materials are potentially hazardous andrequire a high level of safety training, special facilities and equipment, and supervision by appropriateindividuals. You bear the sole responsibility, liability, and risk for the implementation of such safetyprocedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementationof any of the material presented.Legal Notice<br clear="all&gt;&lt;br clear=" all="all" />

Subjects

advanced chemical experimentation | advanced chemical experimentation | Instrumentation | Instrumentation | experiment | experiment | chemistry | chemistry | laboratory | laboratory | integrated chemisty laboratory | integrated chemisty laboratory | chemical synthesis | chemical synthesis | quantum chemistry | quantum chemistry | molecular spectroscopy | molecular spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.020 Introduction to Biological Engineering Design (MIT) 20.020 Introduction to Biological Engineering Design (MIT)

Description

Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's Includes audio/video content: AV special element video. This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.441 Biomaterials-Tissue Interactions (BE.441) (MIT) 20.441 Biomaterials-Tissue Interactions (BE.441) (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | BE.441 | BE.441 | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.007 Design and Manufacturing I (MIT) 2.007 Design and Manufacturing I (MIT)

Description

Includes audio/video content: AV special element video. Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E.From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering.  See this MIT News story for more background, a photo gallery, and videos about this course. Includes audio/video content: AV special element video. Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E.From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering.  See this MIT News story for more background, a photo gallery, and videos about this course.

Subjects

engineering design | engineering design | synthesis | synthesis | analysis | analysis | robustness | robustness | manufacturability | manufacturability | active learning | active learning | idea generation | idea generation | estimation | estimation | materials selection | materials selection | visual thinking | visual thinking | kinematics | kinematics | machine elements | machine elements | robotics | robotics | mechanical engineering | mechanical engineering | student work | student work | contest | contest

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata