Searching for time : 2455 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

Readme file for Real-Time Embedded Systems

Description

This readme file contains details of links to all the Real-Time Embedded Systems module's material held on Jorum and information about the module as well.Subjects

ukoer | complete rate monotonic scheduling lecture | complete rate monotonic scheduling | complete rating monotonic scheduling lecture | complex rms scheduling lecture | complex rms scheduling | complex scheduling lecture | concurrency and determinism lecture | concurrency and determinism | concurrency lecture | concurrency | cyclic executives lecture | cyclic executives | cyclic scheduling lecture | cyclic scheduling | deadline monotonic scheduling lecture | deadline monotonic scheduling | determinism lecture | determinism | embedded real-time scheduling lecture | embedded real-time scheduling | embedded software development lecture | embedded software development practical | embedded software development quiz | embedded software development | embedded system lecture | embedded system modelling | embedded system | embedded systems lecture | embedded systems modeling lecture | embedded systems modeling quiz | embedded systems modelling lecture | embedded systems modelling quiz | embedded systems modelling | embedded systems | es chararcteristics | inter task communication lecture | inter task communication practical | inter task communication quiz | inter task communication | inter task communications lecture | inter task communications practical | inter task communications quiz | inter-task communications lecture | inter-task communications practical | inter-task communications quiz | inter-task communications | memory management lecture | memory management quiz | memory management | multi-tasking lecture | multi-tasking practical | multi-tasking quiz | multi-tasking | processing interrupts lecture | processing interrupts quiz | processing interrupts | real time embedded system quiz | real-time embedded system lecture | real-time embedded system practical | real-time embedded system quiz | real-time embedded system | real-time embedded systems lecture | real-time embedded systems practical | real-time embedded systems quiz | real-time embedded systems revision lecture | real-time embedded systems revision | real-time embedded systems | real-time operating system lecture | real-time operating system practical | real-time operating system quiz | real-time operating system | real-time operating systems lecture | real-time operating systems practical | real-time operating systems quiz | real-time operating systems | rtes lecture | rtes practical | rtes quiz | rtes | scheduling strategies lecture | scheduling strategies | scheduling strategy lecture | scheduling strategy | simple rate monotonic scheduling lecture | simple rate monotonic scheduling | simple real time system structure | simple real-time system structure lecture | es characteristics lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataAstrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advancedSubjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advancedLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT) 6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semest This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semestSubjects

discrete time signals and systems | discrete time signals and systems | discrete-time processing of continuous-time signals | discrete-time processing of continuous-time signals | decimation | decimation | interpolation | interpolation | sampling rate conversion | sampling rate conversion | Flowgraph structures | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | linear prediction | Discrete Fourier transform | Discrete Fourier transform | FFT algorithm | FFT algorithm | Short-time Fourier analysis and filter banks | Short-time Fourier analysis and filter banks | Multirate techniques | Multirate techniques | Hilbert transforms | Hilbert transforms | Cepstral analysis | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReadme file for Distributed Web Systems

Description

This readme file contains details of links to all the Distributed Web Systems module's material held on Jorum and information about the module as well.Subjects

ukoer | web system tutorial | distributed system tutorial | web systems tutorial | distributed system lecture | web systems lecture | web system lecture | introduction to distributed systems lecture | interprocess communications | tomcat reading material | distributed systems architecture | interprocess communications lecture | distributed systems architecture quiz | web systems | distributed system | web system | servlets practical | distributed systems lecture | servlets tutorial | distributed systems quiz | java networking practical | distributed objects and remote method invocation lecture | distributed objects and rmi quiz | time and global state lecture | distributed systems architectures | distributed web systems | distributed web system | remote methods invocation practical | distributed systems | java servlet | transactions and currency control quiz | coordination and agreement lecture | coordination and agreement quiz | time control practical | replication lecture | java servlets | election algorithms practical | mvc approach practical | introduction to distributed web systems | distributed file systems lecture | cookies tutorial | session tracking tutorial | distributed objects lecture | web system quiz | distributed system quiz | web system practical | distributed web systems practical | distributed web system practical | distributed web system quiz | interprocess communication practical | distributed systems tutorial | distributed system practical | distributed web systems tutorial | distributed web systems lecture | distributed web systems quiz | distributed systems practical | java servlet practical | java servlets practical | interprocess communication quiz | distributed systems architectures quiz | distributed objects | distributed systems architecture lecture | distributed web system lecture | java servlet reading material | web system reading material | java servlets reading material | web systems reading material | distributed web systems reading material | distributed web system reading material | v | introduction to distributed web systems lecture | java servlets lecture | distributed web system tutorial | cookies and session tracking tutorial | distributed object lecture | distributed objects and remote method invocation practical | remote method invocation lecture | web systems quiz | fundamental models in distributed systems quiz | interprocess communications practical | web systems practical | request data tutorial | response data tutorial | servlet tutorial | java servlets tutorial | fundamental models in distributed systems lecture | interprocess communications quiz | interprocess communication lecture | distributed systems architectures lecture | distributed system reading material | distributed systems reading material | java servlet lecture | distributed objects quiz | remote method invocation quiz | distributed objects and remote method invocation quiz | distributed object quiz | fundamental models in distributed systems practical | time and global states lecture | java server pages tutorial | java server page tutorial | jsp tutorial | time and global state quiz | time and global states quiz | remote method invocation practical | distributed objects practical | distributed object practical | transactions and currency control lecture | transaction lecture | concurrency lecture | concurrency control lecture | transaction quiz | concurrency quiz | concurrency control quiz | request data practical | response data practical | servlet practical | cookies practical | session tracking practical | cookies and session tracking practical | time and global state practical | time and global states practical | java server pages practical | java server page practical | jsp practical | java beans tutorial | replication quiz | p2p lecture | peer to peer systems lecture | peer to peer system lecture | model-view-controller architecture tutorial | p2p quiz | peer to peer systems quiz | peer to peer system quiz | coordination and agreement practical | java beans practical | name services lecture | name service lecture | name services quiz | name service quiz | model-view-controller architecture practical | web services lecture | semantic web lecture | web services quiz | semantic web quiz | web services practical | semantic web practical | distributed file systems quiz | interprocess communication | fundamental models in distributed systems | request data | response data | servlet | remote method invocation | distributed objects and remote method invocation | distributed object | cookies | session tracking | cookies and session tracking | time and global state | time and global states | java server pages | java server page | jsp | transactions and currency control | transaction | concurrency | concurrency control | coordination and agreement | replication | java beans | p2p | peer to peer systems | peer to peer system | model-view-controller architecture | name services | name service | web services | semantic web | distributed file systems | jdbc tutorial | java database connectivity tutorial | jdbc practical | java database connectivity practical | jdbc | java database connectivity | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReal-Time Embedded Systems - Real-time operating systems

Description

This quiz forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.Subjects

ukoer | real-time operating systems quiz | real-time operating systems | real-time operating system | real-time embedded systems | real-time embedded system | rtes | real-time operating system quiz | real-time embedded systems quiz | real-time embedded system quiz | real time embedded system quiz | rtes quiz | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReal-Time Embedded Systems - Real-time operating systems

Description

This lecture forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.Subjects

ukoer | real-time operating systems lecture | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time operating system lecture | real-time embedded systems lecture | real-time embedded system lecture | rtes lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReal-Time Embedded Systems - Real-time operating systems

Description

This quiz forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.Subjects

ukoer | real-time operating systems quiz | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time embedded systems quiz | real-time embedded system quiz | real time embedded system quiz | rtes quiz | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReal-Time Embedded Systems - Real-time operating systems

Description

This practical and code form part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.Subjects

ukoer | real-time operating systems practical | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time operating system practical | real-time embedded systems practical | real-time embedded system practical | rtes practical | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReal-Time Embedded Systems - Real-time operating systems

Description

This practical and code form part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.Subjects

ukoer | real-time operating systems practical | real-time operating systems | real-time operating system | real-time embedded systems | real-time embedded system | rtes | real-time operating system practical | real-time embedded systems practical | real-time embedded system practical | rtes practical | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.384 Time Series Analysis (MIT) 14.384 Time Series Analysis (MIT)

Description

The course is an introduction to univariate and multivariate time series models. It starts by introducing basic concepts and progresses to more complicated models. The course intends to meet two goals. It provides tools for empirical work with time series data and is an introduction into the theoretical foundation of time series models. The course is an introduction to univariate and multivariate time series models. It starts by introducing basic concepts and progresses to more complicated models. The course intends to meet two goals. It provides tools for empirical work with time series data and is an introduction into the theoretical foundation of time series models.Subjects

time series analysis | time series analysis | univariate time series model | univariate time series model | multivariate time series model | multivariate time series model | time series model | time series modelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata'Empire Crown' on sea trials 'Empire Crown' on sea trials

Description

Subjects

sea | sea | chimney | chimney | england | england | sky | sky | abstract | abstract | men | men | industry | industry | water | water | vent | vent | boat | boat | wire | wire | cabin | cabin | gun | gun | industrial | industrial | ship | ship | unitedkingdom | unitedkingdom | mark | mark | parts | parts | smoke | smoke | wwii | wwii | grain | grain | rail | rail | plate | plate | vessel | vessel | calm | calm | structure | structure | steam | steam | business | business | deck | deck | crew | crew | maritime | maritime | porthole | porthole | figure | figure | cylinder | cylinder | ww2 | ww2 | unusual | unusual | mast | mast | striking | striking | naval | naval | northeast | northeast | southshields | southshields | propellor | propellor | 1943 | 1943 | digitalimage | digitalimage | tankers | tankers | wartime | wartime | secondworldwar | secondworldwar | 1865 | 1865 | worldwartwo | worldwartwo | shipbuilding | shipbuilding | cargoship | cargoship | twentiethcentury | twentiethcentury | blackandwhitephotograph | blackandwhitephotograph | seatrials | seatrials | normandylandings | normandylandings | maritimeheritage | maritimeheritage | sirjamesknott | sirjamesknott | johnreadhead | johnreadhead | stricklineltd | stricklineltd | princeline | princeline | britishshipbuilders | britishshipbuilders | hainsteamshipcompanyltd | hainsteamshipcompanyltd | empireship | empireship | johnreadheadsonsltd | johnreadheadsonsltd | empirecrown | empirecrown | johnreadheadsonssouthshields | johnreadheadsonssouthshields | jsoftley | jsoftley | swanhuntergroup | swanhuntergroup | shipyardmanager | shipyardmanager | johnreadheadco | johnreadheadcoLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.851 Advanced Data Structures (MIT) 6.851 Advanced Data Structures (MIT)

Description

Includes audio/video content: AV lectures. Data structures play a central role in modern computer science. You interact with data structures even more often than with algorithms (think Google, your mail server, and even your network routers). In addition, data structures are essential building blocks in obtaining efficient algorithms. This course covers major results and current directions of research in data structure. Acknowledgments Thanks to videographers Martin Demaine and Justin Zhang. Includes audio/video content: AV lectures. Data structures play a central role in modern computer science. You interact with data structures even more often than with algorithms (think Google, your mail server, and even your network routers). In addition, data structures are essential building blocks in obtaining efficient algorithms. This course covers major results and current directions of research in data structure. Acknowledgments Thanks to videographers Martin Demaine and Justin Zhang.Subjects

data | data | structures | structures | data structures | data structures | computers | computers | computer science | computer science | strings | strings | dynamic graphs | dynamic graphs | integers | integers | hash | hash | hashing | hashing | hashish | hashish | hashtag | hashtag | hash tag | hash tag | hash tagger | hash tagger | memory | memory | memory heirarchy | memory heirarchy | binary tree | binary tree | binary search | binary search | binary search tree | binary search tree | time travel | time travel | back to the future | back to the future | forward to the past | forward to the past | database | database | table | table | database table | database table | cache | cache | caching | caching | mad cache money | mad cache money | logarithmic time | logarithmic time | eurythmic time | eurythmic time | operations | operations | search | search | heaps | heapsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV special element video, AV lectures. This course explores statistical modeling and control in manufacturing processes. Topics include the use of experimental design and response surface modeling to understand manufacturing process physics, as well as defect and parametric yield modeling and optimization. Various forms of process control, including statistical process control, run by run and adaptive control, and real-time feedback control, are covered. Application contexts include semiconductor manufacturing, conventional metal and polymer processing, and emerging micro-nano manufacturing processes. Includes audio/video content: AV special element video, AV lectures. This course explores statistical modeling and control in manufacturing processes. Topics include the use of experimental design and response surface modeling to understand manufacturing process physics, as well as defect and parametric yield modeling and optimization. Various forms of process control, including statistical process control, run by run and adaptive control, and real-time feedback control, are covered. Application contexts include semiconductor manufacturing, conventional metal and polymer processing, and emerging micro-nano manufacturing processes.Subjects

2.830 | 2.830 | 6.780 | 6.780 | ESD.63 | ESD.63 | Process control | Process control | manufacturing process | manufacturing process | discrete system feedback control theory | discrete system feedback control theory | empirical and adaptive modeling | empirical and adaptive modeling | off-line optimization | off-line optimization | statistical process control | statistical process control | real-time control. | real-time control. | real-time control | real-time control | one-factor-at-a-time | one-factor-at-a-time | robustness | robustness | Shewhart Hypothesis | Shewhart Hypothesis | semiconductor manufacturing | semiconductor manufacturingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataHMS Broke in dry dock after the Battle of Jutland HMS Broke in dry dock after the Battle of Jutland

Description

Subjects

roof | roof | sky | sky | people | people | blur | blur | industry | industry | wheel | wheel | metal | metal | wall | wall | buildings | buildings | wonderful | wonderful | children | children | belt | belt | interesting | interesting | wire | wire | workers | workers | support | support | industrial | industrial | ship | ship | dress | dress | darkness | darkness | panel | panel | post | post | unitedkingdom | unitedkingdom | britain | britain | timber | timber | mark | mark | coat | coat | debris | debris | grain | grain | platform | platform | vessel | vessel | battle | battle | rope | rope | destroyer | destroyer | deck | deck | fabric | fabric | maritime | maritime | isleofwight | isleofwight | porthole | porthole | gathering | gathering | damage | damage | unusual | unusual | ww1 | ww1 | damaged | damaged | striking | striking | naval | naval | adults | adults | greatwar | greatwar | drydock | drydock | tyneside | tyneside | firstworldwar | firstworldwar | wreckage | wreckage | warship | warship | fascinating | fascinating | digitalimage | digitalimage | collision | collision | wartime | wartime | eastcowes | eastcowes | rivertyne | rivertyne | royalnavy | royalnavy | industrialheritage | industrialheritage | northeastengland | northeastengland | blackandwhitephotograph | blackandwhitephotograph | shipbuildingheritage | shipbuildingheritage | maritimeheritage | maritimeheritage | battleofjutland | battleofjutland | june1916 | june1916 | jsamuelwhite | jsamuelwhite | shiprepairing | shiprepairing | 1june1916 | 1june1916 | hmsbroke | hmsbroke | thebattleofjutland | thebattleofjutland | hmssparrowhawk | hmssparrowhawk | royalnavalvessel | royalnavalvessel | faulknorclassdestroyer | faulknorclassdestroyerLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.405J Advanced Complexity Theory (MIT) 18.405J Advanced Complexity Theory (MIT)

Description

The topics for this course cover various aspects of complexity theory, such as the basic time and space classes, the polynomial-time hierarchy and the randomized classes . This is a pure theory class, so no applications were involved. The topics for this course cover various aspects of complexity theory, such as the basic time and space classes, the polynomial-time hierarchy and the randomized classes . This is a pure theory class, so no applications were involved.Subjects

Basic time and space classes | Basic time and space classes | polynomial-time hierarchy | polynomial-time hierarchy | Randomized classes: RP | BPP | RL | and their relation to PH | Randomized classes: RP | BPP | RL | and their relation to PH | Counting classes: #P | Counting classes: #P | Non-uniform classes | Non-uniform classes | Oracles | relativization | Oracles | relativization | Interactive proof systems | Interactive proof systems | Pseudo-random generators | Pseudo-random generators | randomness | randomness | Some circuit lower bounds--monotone and AC0. | Some circuit lower bounds--monotone and AC0. | oracles | oracles | relativization | relativization | randomized classes | randomized classes | RP | RP | BPP | BPP | RL | RL | PH | PH | circuit lower bonds | circuit lower bonds | monotone | monotone | AC0 | AC0 | basic time classes | basic time classes | basic space classes | basic space classes | 18.405 | 18.405 | 6.841 | 6.841License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.003 Signals and Systems (MIT) 6.003 Signals and Systems (MIT)

Description

6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing. 6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.Subjects

signal and system analysis | signal and system analysis | representations of discrete-time and continuous-time signals | representations of discrete-time and continuous-time signals | representations of linear time-invariant systems | representations of linear time-invariant systems | Fourier representations | Fourier representations | Laplace and Z transforms | Laplace and Z transforms | sampling | sampling | difference and differential equations | difference and differential equations | feedback and control | feedback and control | communications | communications | signal processing | signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications. Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications.Subjects

Discrete-time filters | Discrete-time filters | convolution | convolution | Fourier transform | Fourier transform | owpass and highpass filters | owpass and highpass filters | Sampling rate change operations | Sampling rate change operations | upsampling and downsampling | upsampling and downsampling | ractional sampling | ractional sampling | interpolation | interpolation | Filter Banks | Filter Banks | time domain (Haar example) and frequency domain | time domain (Haar example) and frequency domain | conditions for alias cancellation and no distortion | conditions for alias cancellation and no distortion | perfect reconstruction | perfect reconstruction | halfband filters and possible factorizations | halfband filters and possible factorizations | Modulation and polyphase representations | Modulation and polyphase representations | Noble identities | Noble identities | block Toeplitz matrices and block z-transforms | block Toeplitz matrices and block z-transforms | polyphase examples | polyphase examples | Matlab wavelet toolbox | Matlab wavelet toolbox | Orthogonal filter banks | Orthogonal filter banks | paraunitary matrices | paraunitary matrices | orthogonality condition (Condition O) in the time domain | orthogonality condition (Condition O) in the time domain | modulation domain and polyphase domain | modulation domain and polyphase domain | Maxflat filters | Maxflat filters | Daubechies and Meyer formulas | Daubechies and Meyer formulas | Spectral factorization | Spectral factorization | Multiresolution Analysis (MRA) | Multiresolution Analysis (MRA) | requirements for MRA | requirements for MRA | nested spaces and complementary spaces; scaling functions and wavelets | nested spaces and complementary spaces; scaling functions and wavelets | Refinement equation | Refinement equation | iterative and recursive solution techniques | iterative and recursive solution techniques | infinite product formula | infinite product formula | filter bank approach for computing scaling functions and wavelets | filter bank approach for computing scaling functions and wavelets | Orthogonal wavelet bases | Orthogonal wavelet bases | connection to orthogonal filters | connection to orthogonal filters | orthogonality in the frequency domain | orthogonality in the frequency domain | Biorthogonal wavelet bases | Biorthogonal wavelet bases | Mallat pyramid algorithm | Mallat pyramid algorithm | Accuracy of wavelet approximations (Condition A) | Accuracy of wavelet approximations (Condition A) | vanishing moments | vanishing moments | polynomial cancellation in filter banks | polynomial cancellation in filter banks | Smoothness of wavelet bases | Smoothness of wavelet bases | convergence of the cascade algorithm (Condition E) | convergence of the cascade algorithm (Condition E) | splines | splines | Bases vs. frames | Bases vs. frames | Signal and image processing | Signal and image processing | finite length signals | finite length signals | boundary filters and boundary wavelets | boundary filters and boundary wavelets | wavelet compression algorithms | wavelet compression algorithms | Lifting | Lifting | ladder structure for filter banks | ladder structure for filter banks | factorization of polyphase matrix into lifting steps | factorization of polyphase matrix into lifting steps | lifting form of refinement equationSec | lifting form of refinement equationSec | Wavelets and subdivision | Wavelets and subdivision | nonuniform grids | nonuniform grids | multiresolution for triangular meshes | multiresolution for triangular meshes | representation and compression of surfaces | representation and compression of surfaces | Numerical solution of PDEs | Numerical solution of PDEs | Galerkin approximation | Galerkin approximation | wavelet integrals (projection coefficients | moments and connection coefficients) | wavelet integrals (projection coefficients | moments and connection coefficients) | convergence | convergence | Subdivision wavelets for integral equations | Subdivision wavelets for integral equations | Compression and convergence estimates | Compression and convergence estimates | M-band wavelets | M-band wavelets | DFT filter banks and cosine modulated filter banks | DFT filter banks and cosine modulated filter banks | Multiwavelets | MultiwaveletsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.405J Advanced Complexity Theory (MIT) 18.405J Advanced Complexity Theory (MIT)

Description

The topics for this course cover various aspects of complexity theory, such as the basic time and space classes, the polynomial-time hierarchy and the randomized classes . This is a pure theory class, so no applications were involved. The topics for this course cover various aspects of complexity theory, such as the basic time and space classes, the polynomial-time hierarchy and the randomized classes . This is a pure theory class, so no applications were involved.Subjects

Basic time and space classes | Basic time and space classes | polynomial-time hierarchy | polynomial-time hierarchy | Randomized classes: RP | BPP | RL | and their relation to PH | Randomized classes: RP | BPP | RL | and their relation to PH | Counting classes: #P | Counting classes: #P | Non-uniform classes | Non-uniform classes | Oracles | relativization | Oracles | relativization | Interactive proof systems | Interactive proof systems | Pseudo-random generators | Pseudo-random generators | randomness | randomness | Some circuit lower bounds--monotone and AC0. | Some circuit lower bounds--monotone and AC0. | oracles | oracles | relativization | relativization | randomized classes | randomized classes | RP | RP | BPP | BPP | RL | RL | PH | PH | circuit lower bonds | circuit lower bonds | monotone | monotone | AC0 | AC0 | basic time classes | basic time classes | basic space classes | basic space classes | 18.405 | 18.405 | 6.841 | 6.841License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.06 Principles of Automatic Control (MIT) 16.06 Principles of Automatic Control (MIT)

Description

The course deals with introduction to design of feedback control systems, properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability. It also covers root locus method, nyquist criterion, frequency-domain design, and state space methods. The course deals with introduction to design of feedback control systems, properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability. It also covers root locus method, nyquist criterion, frequency-domain design, and state space methods.Subjects

feedback control systems | feedback control systems | time-domain and frequency-domain performance measures | time-domain and frequency-domain performance measures | stability | stability | root locus method | root locus method | nyquist criterion | nyquist criterion | frequency-domain design | frequency-domain design | state space methods | state space methods | time-domain performance measures | time-domain performance measures | frequency-domain performance measures | frequency-domain performance measures | aircraft systems | aircraft systems | spacecraft systems | spacecraft systems | control system analysis | control system analysis | time-domain system design | time-domain system designLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is taken mainly by undergraduates, and explores ideas involving signals, systems and probabilistic models in the context of communication, control and signal processing applications. The material expands out from the basics in 6.003 and 6.041. The treatment involves aspects of analysis, synthesis, and optimization. Topics covered differ somewhat from semester to semester, but typically include: random processes, correlations, spectral densities, state-space modeling, multirate processing, signal estimation and detection. This course is taken mainly by undergraduates, and explores ideas involving signals, systems and probabilistic models in the context of communication, control and signal processing applications. The material expands out from the basics in 6.003 and 6.041. The treatment involves aspects of analysis, synthesis, and optimization. Topics covered differ somewhat from semester to semester, but typically include: random processes, correlations, spectral densities, state-space modeling, multirate processing, signal estimation and detection.Subjects

Input-output | Input-output | state-space models | state-space models | linear systems | linear systems | deterministic and random signals | deterministic and random signals | time- and transform-domain representations | time- and transform-domain representations | sampling | sampling | discrete-time processing | discrete-time processing | continuous-time signals | continuous-time signals | state feedback | state feedback | observers | observers | probabilistic models | probabilistic models | stochastic processes | stochastic processes | correlation functions | correlation functions | power spectra | power spectra | whitening filters | whitening filters | Detection | Detection | matched filters | matched filters | Least-mean square error estimation | Least-mean square error estimation | Wiener filtering | Wiener filteringLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Subjects

rivertyne | rivertyne | southshields | southshields | shipbuilding | shipbuilding | johnreadheadsonsltd | johnreadheadsonsltd | shipyard | shipyard | cargoship | cargoship | children | children | shiplaunch | shiplaunch | maritime | maritime | boys | boys | tyneside | tyneside | northeastengland | northeastengland | dragchains | dragchains | cute | cute | rivers | rivers | tugboat | tugboat | ships | ships | empirecrown | empirecrown | empireships | empireships | ww2 | ww2 | secondworldwar | secondworldwar | chain | chain | pile | pile | maritimeheritage | maritimeheritage | industrialheritage | industrialheritage | shipbuildingheritage | shipbuildingheritage | blackandwhitephotograph | blackandwhitephotograph | digitalimage | digitalimage | johnreadheadsonssouthshields | johnreadheadsonssouthshields | industry | industry | launch | launch | threeyoungboys | threeyoungboys | bank | bank | 16october1943 | 16october1943 | worldwarii | worldwarii | northeastofengland | northeastofengland | wartime | wartime | unitedkingdom | unitedkingdom | johnreadhead | johnreadhead | construction | construction | development | development | chimney | chimney | smoke | smoke | cylinder | cylinder | blur | blur | grain | grain | post | post | sky | sky | water | water | land | land | timber | timber | clothing | clothing | crease | crease | button | button | attentive | attentive | standing | standing | gathering | gathering | fascinating | fascinating | interesting | interesting | poignant | poignant | unusual | unusual | jsoftley | jsoftley | lawe | lawe | johnreadheadco | johnreadheadco | highwestyard | highwestyard | swanhuntergroup | swanhuntergroup | britishshipbuilders | britishshipbuilders | vessel | vessel | hainsteamshipcompanyltd | hainsteamshipcompanyltd | stricklineltd | stricklineltd | princeline | princeline | sirjamesknott | sirjamesknott | smiling | smiling | hair | hairLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataFirst World War Patrol boat on sea trials First World War Patrol boat on sea trials

Description

Subjects

southshields | southshields | shipbuilding | shipbuilding | johnreadheadsonsltd | johnreadheadsonsltd | p31 | p31 | patrolboat | patrolboat | firstworldwar | firstworldwar | seatrials | seatrials | ww1 | ww1 | marine | marine | maritime | maritime | royalnavy | royalnavy | naval | naval | waves | waves | maritimeheritage | maritimeheritage | industrialheritage | industrialheritage | worldwarone | worldwarone | wartime | wartime | industry | industry | shipbuildingheritage | shipbuildingheritage | blackandwhitephotograph | blackandwhitephotograph | digitalimage | digitalimage | archives | archives | johnreadhead | johnreadhead | johnreadheadsonssouthshields | johnreadheadsonssouthshields | northeastofengland | northeastofengland | unitedkingdom | unitedkingdom | vessel | vessel | sea | sea | sky | sky | water | water | transportation | transportation | patrolboatp31 | patrolboatp31 | 1916 | 1916 | emergencywarprogramme | emergencywarprogramme | patrol | patrol | escortwork | escortwork | submarinehunting | submarinehunting | relief | relief | development | development | production | production | construction | construction | shipyard | shipyard | jsoftley | jsoftley | johnreadheadco | johnreadheadco | highwestyard | highwestyard | swanhuntergroup | swanhuntergroup | britishshipbuilders | britishshipbuilders | hainsteamshipcompanyltd | hainsteamshipcompanyltd | stricklineltd | stricklineltd | ship | ship | princeline | princeline | sirjamesknott | sirjamesknott | interesting | interesting | unusual | unusual | fascinating | fascinating | impressive | impressive | cloudy | cloudy | grain | grain | mark | mark | mast | mast | gun | gun | mount | mount | cabin | cabin | deck | deck | rail | rail | wire | wire | rope | rope | crew | crew | porthole | porthole | parts | parts | navy | navy | navalship | navalship | float | floatLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Scheduling" topic in the Real-Time Embedded Systems module.Subjects

ukoer | embedded real-time scheduling | real-time embedded systems | real-time embedded system | rtes | embedded systems | embedded real-time scheduling lecture | real-time embedded systems lecture | real-time embedded system lecture | rtes lecture | embedded systems lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata