Searching for toggle switch : 2 results found | RSS Feed for this search

2.18 Biomolecular Feedback Systems (MIT) 2.18 Biomolecular Feedback Systems (MIT)

Description

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control. This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subjects

biomolecular feedback systems | biomolecular feedback systems | systems biology | systems biology | modeling | modeling | feedback | feedback | cell | cell | system | system | control | control | dynamical | dynamical | input/output | input/output | synthetic biology | synthetic biology | techniques | techniques | transcription | transcription | translation | translation | transcriptional regulation | transcriptional regulation | post-transcriptional regulation | post-transcriptional regulation | cellular subsystems | cellular subsystems | dynamic behavior | dynamic behavior | analysis | analysis | equilibrium | equilibrium | robustness | robustness | oscillatory behavior | oscillatory behavior | bifurcations | bifurcations | model reduction | model reduction | stochastic | stochastic | biochemical | biochemical | simulation | simulation | linear | linear | circuit | circuit | design | design | biological circuit design | biological circuit design | negative autoregulation | negative autoregulation | toggle switch | toggle switch | repressilator | repressilator | activator-repressor clock | activator-repressor clock | IFFL | IFFL | incoherent feedforward loop | incoherent feedforward loop | bacterial chemotaxis | bacterial chemotaxis | interconnecting components | interconnecting components | modularity | modularity | retroactivity | retroactivity | gene circuit | gene circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.18 Biomolecular Feedback Systems (MIT)

Description

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subjects

biomolecular feedback systems | systems biology | modeling | feedback | cell | system | control | dynamical | input/output | synthetic biology | techniques | transcription | translation | transcriptional regulation | post-transcriptional regulation | cellular subsystems | dynamic behavior | analysis | equilibrium | robustness | oscillatory behavior | bifurcations | model reduction | stochastic | biochemical | simulation | linear | circuit | design | biological circuit design | negative autoregulation | toggle switch | repressilator | activator-repressor clock | IFFL | incoherent feedforward loop | bacterial chemotaxis | interconnecting components | modularity | retroactivity | gene circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata