Searching for torsion : 27 results found | RSS Feed for this search

1

Introduction to torsion : document transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

ukoer | engscoer | cc-by | leicester college | leicester college tech | leicestercollegeoer | engineering department | education | higher education | learning | nqf l4 | engineering science | torsional stiffness | torsion | twisting | edexcel hn unit | edexcel | torsional | science | introduction to torsion | torque | engineering | stiffness | shaft | power | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members

Description

This lecture gives background to calculation methods for aluminium members in order to understand the specific behavior of statically loaded aluminium alloy structures. Basic structural mechanic, design philosophy and structural aluminium alloys and product forms is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | safety | serviceability | geometrical imperfections | extruded profiles | welded profiles | residual stresses | mechanical properties | bauschinger effect | heat affected zones | stress-strain relationship | strength | reduced strength | partial coefficients | resistance factors | gross section | net section | local buckling | cross section classes | slender plates | effective cross section | class 4 cross sections | deflections of beams | breathing | bending moment | yielding | slenderness parameter | element classification | effective thickness | welded section | section with holes | lateral torsional buckling | axial force | tensile force | compressive force | euler load | squash load | flexural buckling | reduction factor | buckling length | splices | end connections | welded columns | columns with bolt holes | cut-outs | longitudinal welds | transverse welds | columns with unfilled bolt-holes | built-up members | intermediate stiffeners | edge stiffeners | single-sided rib | multi-stiffened plates | orthotropic plates | shear force | plate girder webs | shear buckling | shear resistance | webs with stiffeners | plate girders with intermediate stiffeners | corrugated webs | closely stiffened webs | concentrated loads | beam webs without stiffeners | beam webs with stiffeners | shear centre | closed sections | open sections | torsion without warping | torsion with warpin | bending and axial tension | bending and axial compression | strength of beam-column segments | rectangular section | strain hardening | plastic theory | i-section | h-section | thin walled cross sections | t-section | biaxial bending | linear stress distribution | shear lag | flange curling | lateral deflection | non-symmetrical flanges | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members

Description

This lecture gives background to calculation methods for aluminium members in order to understand the specific behavior of statically loaded aluminium alloy structures. Basic structural mechanic, design philosophy and structural aluminium alloys and product forms is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | safety | serviceability | geometrical imperfections | extruded profiles | welded profiles | residual stresses | mechanical properties | Bauschinger effect | heat affected zones | stress-strain relationship | strength | reduced strength | partial coefficients | resistance factors | gross section | net section | local buckling | cross section classes | slender plates | effective cross section | class 4 cross sections | deflections of beams | breathing | bending moment | yielding | slenderness parameter | element classification | effective thickness | welded section | section with holes | lateral torsional buckling | axial force | tensile force | compressive force | Euler load | squash load | flexural buckling | reduction factor | buckling length | splices | end connections | welded columns | columns with bolt holes | cut-outs | longitudinal welds | transverse welds | columns with unfilled bolt-holes | built-up members | intermediate stiffeners | edge stiffeners | single-sided rib | multi-stiffened plates | orthotropic plates | shear force | plate girder webs | shear buckling | shear resistance | webs with stiffeners | plate girders with intermediate stiffeners | corrugated webs | closely stiffened webs | concentrated loads | beam webs without stiffeners | beam webs with stiffeners | shear centre | closed sections | open sections | torsion without warping | torsion with warpin | bending and axial tension | bending and axial compression | strength of beam-column segments | rectangular section | strain hardening | plastic theory | I-section | H-section | thin walled cross sections | T-section | biaxial bending | linear stress distribution | shear lag | flange curling | lateral deflection | non-symmetrical flanges | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.20 Structural Mechanics (MIT) 16.20 Structural Mechanics (MIT)

Description

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures. Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Subjects

solid mechanics | solid mechanics | high-technology structures | high-technology structures | Structural design considerations | Structural design considerations | three-dimensional elasticity theory | three-dimensional elasticity theory | stress | stress | strain | strain | anisotropic materials | anisotropic materials | heating effects | heating effects | torsion theory | torsion theory | Bending | Bending | shear | shear | Buckling | Buckling | stability phenomena | stability phenomena | structural dynamics | structural dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking. Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.

Subjects

solid mechanics | solid mechanics | engineering design | engineering design | open ended exercises | open ended exercises | matrix analysis of structures | matrix analysis of structures | structural mechanics | structural mechanics | static equilibrium | static equilibrium | force resultants | force resultants | support conditions | support conditions | determinate planar structures | determinate planar structures | beams | beams | trusses | trusses | frames | frames | stress | stress | strain | strain | shear | shear | bending | bending | torsion | torsion | matrix methods | matrix methods | elastic stability | elastic stability | design exercises | design exercises | interactive exercises | interactive exercises | systems thinking | systems thinking

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Design (MIT) Design (MIT)

Description

This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage, This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage,

Subjects

ships | ships | offshore structures | offshore structures | structural mechanics | structural mechanics | Hydrostatic loading | Hydrostatic loading | shear load | shear load | bending moment | bending moment | ship structural design concepts | ship structural design concepts | superstructures | superstructures | primary strength | primary strength | transverse shear stresses | transverse shear stresses | torsional strength | torsional strength | Failure mechanisms | Failure mechanisms | design limit states | design limit states | plastic analysis | plastic analysis | Matrix stiffness | Matrix stiffness | grillage | grillage | finite element analysis | finite element analysis | 2.082 | 2.082

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the

Subjects

elastic stability | elastic stability | matrix methods | matrix methods | statically indeterminate systems | statically indeterminate systems | torsion | torsion | bending | bending | shearing | shearing | strains in structural elements | strains in structural elements | stress | stress | beams | beams | frames | frames | determinate planar structures | determinate planar structures | support conditions | support conditions | static equilibrium | static equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT) 2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term. This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | plates | shells | shells | engineering strain | engineering strain | strain measure | strain measure | bending moment | bending moment | structural plasticity | structural plasticity | membrane energy | membrane energy | green-lagrangian strain | green-lagrangian strain | bending theory of plates | bending theory of plates | buckling theory of plates | buckling theory of plates | raleigh-ritz quotient | raleigh-ritz quotient | local buckling | local buckling | plastic buckling | plastic buckling | cylindrical shells | cylindrical shells | axial load | axial load | lateral pressure | lateral pressure | hydrostatic pressure | hydrostatic pressure | torsion | torsion | bending boundary conditions | bending boundary conditions | strain-displacement | strain-displacement | 2.081 | 2.081 | 16.230 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials I (MIT) Materials I (MIT)

Description

This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation. This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subjects

statics | statics | pressure | pressure | deformation | deformation | deformable solid | deformable solid | equilibrium | equilibrium | geometric compatibility | geometric compatibility | material behavior | material behavior | stress | stress | strain | strain | shear | shear | elasticity | elasticity | thermal expansion | thermal expansion | failure modes | failure modes | biomechanics | biomechanics | natural materials | natural materials | motion | motion | structure | structure | force | force | moment | moment | member | member | truss | truss | friction | friction | torsion | torsion | bending | bending | displacement | displacement | beam | beam

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT) 2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term. This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | plates | shells | shells | engineering strain | engineering strain | strain measure | strain measure | bending moment | bending moment | structural plasticity | structural plasticity | membrane energy | membrane energy | green-lagrangian strain | green-lagrangian strain | bending theory of plates | bending theory of plates | buckling theory of plates | buckling theory of plates | raleigh-ritz quotient | raleigh-ritz quotient | local buckling | local buckling | plastic buckling | plastic buckling | cylindrical shells | cylindrical shells | axial load | axial load | lateral pressure | lateral pressure | hydrostatic pressure | hydrostatic pressure | torsion | torsion | bending boundary conditions | bending boundary conditions | strain-displacement | strain-displacement | 2.081 | 2.081 | 16.230 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Design (13.122) (MIT) Design (13.122) (MIT)

Description

This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage, This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage,

Subjects

ships | ships | offshore structures | offshore structures | structural mechanics | structural mechanics | Hydrostatic loading | Hydrostatic loading | shear load | shear load | bending moment | bending moment | ship structural design concepts | ship structural design concepts | superstructures | superstructures | primary strength | primary strength | transverse shear stresses | transverse shear stresses | torsional strength | torsional strength | Failure mechanisms | Failure mechanisms | design limit states | design limit states | plastic analysis | plastic analysis | Matrix stiffness | Matrix stiffness | grillage | grillage | finite element analysis | finite element analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.20 Structural Mechanics (MIT)

Description

Applies solid mechanics to analysis of high-technology structures. Structural design considerations. Review of three-dimensional elasticity theory; stress, strain, anisotropic materials, and heating effects. Two-dimensional plane stress and plane strain problems. Torsion theory for arbitrary sections. Bending of unsymmetrical section and mixed material beams. Bending, shear, and torsion of thin-wall shell beams. Buckling of columns and stability phenomena. Introduction to structural dynamics. Exercises in the design of general and aerospace structures.

Subjects

solid mechanics | high-technology structures | Structural design considerations | three-dimensional elasticity theory | stress | strain | anisotropic materials | heating effects | torsion theory | Bending | shear | Buckling | stability phenomena | structural dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | shells | engineering strain | strain measure | bending moment | structural plasticity | membrane energy | green-lagrangian strain | bending theory of plates | buckling theory of plates | raleigh-ritz quotient | local buckling | plastic buckling | cylindrical shells | axial load | lateral pressure | hydrostatic pressure | torsion | bending boundary conditions | strain-displacement | 2.081 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open cross section

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for hollow cross section

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck profile

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials I (MIT)

Description

This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subjects

statics | pressure | deformation | deformable solid | equilibrium | geometric compatibility | material behavior | stress | strain | shear | elasticity | thermal expansion | failure modes | biomechanics | natural materials | motion | structure | force | moment | member | truss | friction | torsion | bending | displacement | beam

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Design (13.122) (MIT)

Description

This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage,

Subjects

ships | offshore structures | structural mechanics | Hydrostatic loading | shear load | bending moment | ship structural design concepts | superstructures | primary strength | transverse shear stresses | torsional strength | Failure mechanisms | design limit states | plastic analysis | Matrix stiffness | grillage | finite element analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT)

Description

This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the

Subjects

elastic stability | matrix methods | statically indeterminate systems | torsion | bending | shearing | strains in structural elements | stress | beams | frames | determinate planar structures | support conditions | static equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Edexcel HND unit : engineering science (Nqf L4) : document transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

ukoer | engscoer | cc-by | leicester college | leicester college tech | leicestercollegeoer | engineering department | education | higher education | learning | stress | potential | columns | strain | linear motion | angular motion | statics | engineering science | beams | nqfl4 | kinetic | edexcel hnd unit | bending moment | rotation | stiffness | slenderness ratio | young's modulus | torsion | hnd | 2009-2010 | twisting | energy | shear force | edexcel hn unit engineering science | struts | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.081J Plates and Shells (MIT)

Description

This course explores the following topics: derivation of elastic and plastic stress-strain relations for plate and shell elements; the bending and buckling of rectangular plates; nonlinear geometric effects; post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in naval architecture; the general theory of elastic shells and axisymmetric shells; buckling, crushing and bending strength of cylindrical shells with application to offshore structures; and the application to crashworthiness of vehicles and explosive and impact loading of structures. The class is taught during the first half of term.

Subjects

plates | shells | engineering strain | strain measure | bending moment | structural plasticity | membrane energy | green-lagrangian strain | bending theory of plates | buckling theory of plates | raleigh-ritz quotient | local buckling | plastic buckling | cylindrical shells | axial load | lateral pressure | hydrostatic pressure | torsion | bending boundary conditions | strain-displacement | 2.081 | 16.230

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open cross section

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for hollow cross section

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck profile

Description

This example provides calculations on torsion of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | torsion | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials I (MIT)

Description

This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subjects

statics | pressure | deformation | deformable solid | equilibrium | geometric compatibility | material behavior | stress | strain | shear | elasticity | thermal expansion | failure modes | biomechanics | natural materials | motion | structure | force | moment | member | truss | friction | torsion | bending | displacement | beam

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata