Searching for traction : 281 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Snowman's Holiday

Description

Subjects

horses | fish | golf | boats | football | florida | miami | 1950s | snowmen | golfing | monkeys | horseracing | snakes | golfers | vizcaya | touristattractions | miamiseaquarium | bobhope | greyhounds | edsullivan | snowwomen | cobras | golfcourses | jaialai | hialeah | dogracing | robertgoulet | torchoffriendship | dadecounty | powerboatracing | dogtracks | alligatorwrestling | horsetracks | orangebowlstadium | miamiserpentarium | statelibraryandarchivesofflorida | cobramilking | tropicalgardenstouristattraction | parrotjungletouristattraction | miamimetronewsbureau | monkeyjungletouristattraction

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Introduction to Software Engineering in Java (MIT) 6.092 Introduction to Software Engineering in Java (MIT)

Description

This course is an introduction to Java™ programming and software engineering. It is designed for those who have little or no programming experience in Java and covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course is an introduction to Java™ programming and software engineering. It is designed for those who have little or no programming experience in Java and covers concepts useful to 6.005. The focus is on developing high quality, working software that solves real problems. Students will learn the fundamentals of Java, and how to use 3rd party libraries to get more done with less work. Each session includes one hour of lecture and one hour of assisted lab work. Short labs are assigned with each lecture.This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

java; software engineering; programming; introductory programming; object oriented programming; software design; methods; conditionals; loops; arrays; objects; classes; inheritance; abstraction; design; exceptions; eclipse; testing; unit testing; debugging; programming style | java; software engineering; programming; introductory programming; object oriented programming; software design; methods; conditionals; loops; arrays; objects; classes; inheritance; abstraction; design; exceptions; eclipse; testing; unit testing; debugging; programming style | java | java | software engineering | software engineering | programming | programming | introductory programming | introductory programming | object oriented programming | object oriented programming | software design | software design | methods | methods | conditionals | conditionals | loops | loops | arrays | arrays | objects | objects | classes | classes | inheritance | inheritance | abstraction | abstraction | design | design | exceptions | exceptions | eclipse | eclipse | testing | testing | unit testing | unit testing | debugging | debugging | programming style | programming style

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.170 Laboratory in Software Engineering (MIT) 6.170 Laboratory in Software Engineering (MIT)

Description

This course is a a core electrical engineering computer science subject at MIT. It introduces concepts and techniques relevant to the production of large software systems. Students are taught a programming method based on the recognition and description of useful abstractions. Topics include: modularity; specification; data abstraction; object modeling; design patterns; and testing. Several programming projects of varying size undertaken by students working individually and in groups. This course is a a core electrical engineering computer science subject at MIT. It introduces concepts and techniques relevant to the production of large software systems. Students are taught a programming method based on the recognition and description of useful abstractions. Topics include: modularity; specification; data abstraction; object modeling; design patterns; and testing. Several programming projects of varying size undertaken by students working individually and in groups.

Subjects

software development | modularity | specification; data abstraction; object modeling | design patterns | software development | modularity | specification; data abstraction; object modeling | design patterns | modularity | modularity | software development | software development | specification | specification | data abstraction | data abstraction | software design | software design | object modeling | object modeling | software testing | software testing | large systems | large systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT)

Description

Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced models of the Cosmos.

Subjects

black hole | general relativity | astrophysics | cosmology | Energy and momentum in flat spacetime | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | elementary models of the Cosmos | Global Positioning System | solar system tests of relativity | descending into a black hole | gravitational lensing | gravitational waves | Gravity Probe B | more advanced models of the Cosmos | spacetime curvature | rotating centers of attraction | nonrotating centers of attraction | event horizon | energy | momentum | flat spacetime | metric | trajectories | orbits | particles | light | elementary | models | cosmos | spacetime | curvature | flat | GPS | gravitational | lensing | waves | rotating | nonrotating | centers | attraction | solar system | tests | relativity | general | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.800 Tribology (MIT) 2.800 Tribology (MIT)

Description

This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points. This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points.

Subjects

tribology | tribology | surfaces | surfaces | interface | interface | friction | friction | wear | wear | metal | metal | polymer | polymer | ceramics | ceramics | abrasive wear | abrasive wear | delamination theory | delamination theory | tool wear | tool wear | erosive wear | erosive wear | composites | composites | boundary lubrication | boundary lubrication | solid-film lubrication. nano-tribology | solid-film lubrication. nano-tribology | macro-tribology | macro-tribology | rolling contacts | rolling contacts | magnetic recording | magnetic recording | electrical contact | electrical contact | connector | connector | axiomatic design | axiomatic design | traction | traction | seals | seals | solid-film lubrication | solid-film lubrication | nano-tribology | nano-tribology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

White rock Res. 25 H.P. Case Engine rolling embankment White rock Res. 25 H.P. Case Engine rolling embankment

Description

Subjects

texas | texas | whiterocklake | whiterocklake | reservoirs | reservoirs | dams | dams | tractionengines | tractionengines

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (MIT) 6.033 Computer System Engineering (MIT)

Description

Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises. Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises.

Subjects

computer systems | computer systems | systems design | systems design | complexity | complexity | abstractions | abstractions | modularity | modularity | client server | client server | operating system | operating system | performance | performance | networks | networks | layering | layering | routing | routing | congestion control | congestion control | reliability | reliability | atomicity | atomicity | isolation | isolation | security | security | authentication | authentication | cryptography | cryptography | therac 25 | therac 25 | unix | unix | mapreduce | mapreduce | architecture of complexity | architecture of complexity | trusting trust | trusting trust | computer system design | computer system design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

roller coaster at the Busch Gardens amusement park - Tampa roller coaster at the Busch Gardens amusement park - Tampa

Description

Subjects

florida | florida | tampa | tampa | buschgardens | buschgardens | attractions | attractions | amusement | amusement | parks | parks | amusementrides | amusementrides | rollercoasters | rollercoasters

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.287 Kitchen Chemistry (MIT) SP.287 Kitchen Chemistry (MIT)

Description

This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes. This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes.

Subjects

cooking | cooking | food | food | chemistry | chemistry | experiment | experiment | extraction | extraction | denaturation | denaturation | phase change | phase change | capsicum | capsicum | biochemistry | biochemistry | chocolate | chocolate | cheese | cheese | yeast | yeast | recipe | recipe | jam | jam | pectin | pectin | enzyme | enzyme | dairy | dairy | molecular gastronomy | molecular gastronomy | salt | salt | colloid | colloid | stability | stability | liquid nitrogen | liquid nitrogen | ice cream | ice cream | biology | biology | microbiology | microbiology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.6-011 The Art of Insight in Science and Engineering: Mastering Complexity (MIT) RES.6-011 The Art of Insight in Science and Engineering: Mastering Complexity (MIT)

Description

In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.) In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.)

Subjects

approximation | approximation | science | science | engineering | engineering | complexity | complexity | divide and conquer | divide and conquer | abstraction | abstraction | symmetry | symmetry | proportion | proportion | dimension | dimension | lumping | lumping | probabalistic reasoning | probabalistic reasoning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-RES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Resistive elements and networks | independent and dependent sources | switches and MOS devices | digital abstraction | amplifiers | and energy storage elements | Dynamics of first- and second-order networks | design in the time and frequency domains | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.001 Structure and Interpretation of Computer Programs (MIT) 6.001 Structure and Interpretation of Computer Programs (MIT)

Description

This course introduces students to the principles of computation. Upon completion of 6.001, students should be able to explain and apply the basic methods from programming languages to analyze computational systems, and to generate computational solutions to abstract problems. Substantial weekly programming assignments are an integral part of the course. This course is worth 4 Engineering Design Points.Technical RequirementsScheme software is required to run the .scm files found on this course site. This course introduces students to the principles of computation. Upon completion of 6.001, students should be able to explain and apply the basic methods from programming languages to analyze computational systems, and to generate computational solutions to abstract problems. Substantial weekly programming assignments are an integral part of the course. This course is worth 4 Engineering Design Points.Technical RequirementsScheme software is required to run the .scm files found on this course site.

Subjects

programming | programming | Scheme | Scheme | abstraction | abstraction | recursion | recursion | iteration | iteration | object oriented | object oriented | structure | structure | interpretation | interpretation | computer programs | computer programs | languages | languages | procedures | procedures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | Assessment of energy systems | resources | resources | extraction | extraction | conversion | conversion | and end-use | and end-use | regional and global energy needs | regional and global energy needs | 21st century | 21st century | sustainable manner | sustainable manner | renewable and conventional energy technologies | renewable and conventional energy technologies | biomass energy | biomass energy | fossil fuels | fossil fuels | geothermal energy | geothermal energy | nuclear power | nuclear power | wind power | wind power | solar energy | solar energy | hydrogen fuel | hydrogen fuel | fusion energy | fusion energy | analysis of energy technology systems | analysis of energy technology systems | political | political | social | social | economic | economic | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.824 Distributed Computer Systems (MIT) 6.824 Distributed Computer Systems (MIT)

Description

This course covers abstractions and implementation techniques for the design of distributed systems. Topics include: server design, network programming, naming, storage systems, security, and fault tolerance. The assigned readings for the course are from current literature. This course is worth 6 Engineering Design Points. This course covers abstractions and implementation techniques for the design of distributed systems. Topics include: server design, network programming, naming, storage systems, security, and fault tolerance. The assigned readings for the course are from current literature. This course is worth 6 Engineering Design Points.

Subjects

distributed computer systems | distributed computer systems | abstractions | abstractions | server design | server design | network programming | network programming | naming | naming | storage systems | storage systems | security | security | fault tolerance | fault tolerance | C++ | C++

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

First Days Pasenger [sic] Service, July 1 '08. Dallas-Sherman-Interurban. First Days Pasenger [sic] Service, July 1 '08. Dallas-Sherman-Interurban.

Description

Subjects

men | men | texas | texas | trolleys | trolleys | rppc | rppc | clerestorycoachusstock | clerestorycoachusstock | texastractioncompany | texastractioncompany

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Town Hall, Kingstown Town Hall, Kingstown

Description

Subjects

robertfrench | robertfrench | williamlawrence | williamlawrence | lawrencecollection | lawrencecollection | lawrencephotographicstudio | lawrencephotographicstudio | thelawrencephotographcollection | thelawrencephotographcollection | glassnegative | glassnegative | nationallibraryofireland | nationallibraryofireland | townhall | townhall | kingstowndunlaoghaire | kingstowndunlaoghaire | paviliontheatre | paviliontheatre | kingstown | kingstown | pavilion | pavilion | paviliongardenskingstown | paviliongardenskingstown | 1539 | 1539 | clock | clock | railwaystation | railwaystation | waterfront | waterfront | attractions | attractions | metaltapeengraver | metaltapeengraver | thingamajig | thingamajig | fire | fire | turnstile | turnstile | countydublin | countydublin

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Florida Gulf Coast Holiday Florida Gulf Coast Holiday

Description

Subjects

florida | florida | attractions | attractions | spongediving | spongediving | tourism | tourism | gulfcoast | gulfcoast | fishing | fishing | boating | boating | waterskiing | waterskiing

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Musical Moments at Miami's Seaquarium Musical Moments at Miami's Seaquarium

Description

Subjects

florida | florida | miami | miami | miamisequarium | miamisequarium | attractions | attractions | dolphins | dolphins | mammals | mammals | seals | seals | whales | whales

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | relativity | special relativity | special relativity | Einstein's postulates | Einstein's postulates | simultaneity | simultaneity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects | relativistic effects | Minkowski diagrams | Minkowski diagrams | relativistic invariants | relativistic invariants | four-vectors | four-vectors | relativitistic particle collisions | relativitistic particle collisions | relativity and electricity | relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | general relativity | general relativity | Schwarzchild metric | Schwarzchild metric | gravitational | gravitational | red shift | red shift | light trajectories | light trajectories | geodesics | geodesics | Shapiro delay | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.07 Dynamics (MIT) 16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | Curvilinear motion | carteian coordinates | carteian coordinates | dynamics | dynamics | equations of motion | equations of motion | intrinsic coordinates | intrinsic coordinates | coordinate systems | coordinate systems | work | work | energy | energy | conservative forces | conservative forces | potential energy | potential energy | linear impulse | linear impulse | mommentum | mommentum | angular impulse | angular impulse | relative motion | relative motion | rotating axes | rotating axes | translating axes | translating axes | Newton's second law | Newton's second law | inertial forces | inertial forces | accelerometers | accelerometers | Newtonian relativity | Newtonian relativity | gravitational attraction | gravitational attraction | 2D rigid body kinematics | 2D rigid body kinematics | conservation laws for systems of particles | conservation laws for systems of particles | 2D rigid body dynamics | 2D rigid body dynamics | pendulums | pendulums | 3D rigid body kinematics | 3D rigid body kinematics | 3d rigid body dynamics | 3d rigid body dynamics | inertia tensor | inertia tensor | gyroscopic motion | gyroscopic motion | torque-free motion | torque-free motion | spin stabilization | spin stabilization | variable mass systems | variable mass systems | rocket equation | rocket equation | central foce motion | central foce motion | Keppler's laws | Keppler's laws | orbits | orbits | orbit transfer | orbit transfer | vibration | vibration | spring mass systems | spring mass systems | forced vibration | forced vibration | isolation | isolation | coupled oscillators | coupled oscillators | normal modes | normal modes | wave propagation | wave propagation | cartesian coordinates | cartesian coordinates | momentum | momentum | central force motion | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata