Searching for transmitters : 33 results found | RSS Feed for this search

1

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger | neurotransmitter | neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | parkinson's disease | parkinson's disease | seratonin | seratonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit. Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.08J Philosophical Issues in Brain Science (MIT) 24.08J Philosophical Issues in Brain Science (MIT)

Description

Includes audio/video content: AV special element video. This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept 'innate'? Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists. Includes audio/video content: AV special element video. This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept 'innate'? Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists.

Subjects

brain | brain | philosophy | philosophy | science | science | holism | holism | cultural object | cultural object | contemporary media | contemporary media | society | society | cultural assumptions | cultural assumptions | neuroscience | neuroscience | anthropology | anthropology | history | history | semiotics | semiotics | cognitive sciences | cognitive sciences | historical views | historical views | digital images | digital images | psychopharmacology | psychopharmacology | mental illness | mental illness | neurotransmitters | neurotransmitters | brain science | brain science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.22J A Clinical Approach to the Human Brain (MIT) 9.22J A Clinical Approach to the Human Brain (MIT)

Description

This course is designed to provide an understanding of how the human brain works in health and disease, and is intended for both the Brain and Cognitive Sciences major and the non-Brain and Cognitive Sciences major. Knowledge of how the human brain works is important for all citizens, and the lessons to be learned have enormous implications for public policy makers and educators. The course will cover the regional anatomy of the brain and provide an introduction to the cellular function of neurons, synapses and neurotransmitters. Commonly used drugs that alter brain function can be understood through a knowledge of neurotransmitters. Along similar lines, common diseases that illustrate normal brain function will be discussed. Experimental animal studies that reveal how the brain works wil This course is designed to provide an understanding of how the human brain works in health and disease, and is intended for both the Brain and Cognitive Sciences major and the non-Brain and Cognitive Sciences major. Knowledge of how the human brain works is important for all citizens, and the lessons to be learned have enormous implications for public policy makers and educators. The course will cover the regional anatomy of the brain and provide an introduction to the cellular function of neurons, synapses and neurotransmitters. Commonly used drugs that alter brain function can be understood through a knowledge of neurotransmitters. Along similar lines, common diseases that illustrate normal brain function will be discussed. Experimental animal studies that reveal how the brain works wil

Subjects

9.22 | 9.22 | HST.422 | HST.422 | brain | brain | fMRI | fMRI | visual | visual | spatial | spatial | dyslexia | dyslexia | development | development | motor activities | motor activities | anatomy | anatomy | cellular function | cellular function | neurons | neurons | synapes | synapes | neurotransmitters | neurotransmitters | diseases | diseases | animal studies | animal studies | clinical cases | clinical cases | activity-dependent development | activity-dependent development | critical periods | critical periods | plasticity | plasticity | learning | learning | emotional disorders | emotional disorders | vision | vision | language | language | motor function | motor function | pain | pain | placebo effects | placebo effects | emotional states | emotional states | education | education | dementia | dementia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Neurotransmitters (MIT) Neurotransmitters (MIT)

Description

Subject examines the brain as a cultural object in contemporary media, science, and society. Explores cultural assumptions about neuroscience by drawing on anthropology, history, semiotics, and the cognitive sciences. Topics include historical views of the brain; digital images of the brain; psychopharmacology; mental illness; neurotransmitters; and the culture of brain science. Class assignments include three brief analytical papers and one oral presentation. Subject examines the brain as a cultural object in contemporary media, science, and society. Explores cultural assumptions about neuroscience by drawing on anthropology, history, semiotics, and the cognitive sciences. Topics include historical views of the brain; digital images of the brain; psychopharmacology; mental illness; neurotransmitters; and the culture of brain science. Class assignments include three brief analytical papers and one oral presentation.

Subjects

brain | brain | cultural object | cultural object | contemporary media | contemporary media | science | science | society | society | cultural assumptions | cultural assumptions | neuroscience | neuroscience | anthropology | anthropology | history | history | semiotics | semiotics | cognitive sciences | cognitive sciences | historical views | historical views | digital images | digital images | psychopharmacology | psychopharmacology | mental illness | mental illness | neurotransmitters | neurotransmitters | brain science | brain science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S10 Drugs and the Brain (MIT) ES.S10 Drugs and the Brain (MIT)

Description

This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi

Subjects

brain | brain | drugs | drugs | pharmacology | pharmacology | neurotransmitters | neurotransmitters | drug mechanisms | drug mechanisms | brain disease | brain disease | addiction | addiction | schizophrenia | schizophrenia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.011 The Brain and Cognitive Sciences I (MIT) 9.011 The Brain and Cognitive Sciences I (MIT)

Description

Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students. Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.

Subjects

CNS | CNS | nervous system | nervous system | molecular | molecular | cellular | cellular | systems | systems | development | development | cell biology | cell biology | neurons | neurons | neurotransmitters | neurotransmitters | synaptic | synaptic | transmission | transmission | sensory systems | sensory systems | brain | brain | neuroendocrine system | neuroendocrine system | the motor system | the motor system | cortical functions | cortical functions | behavioral | behavioral | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Understanding the environment: Thinking styles and models Understanding the environment: Thinking styles and models

Description

There is increasing recognition that the reductionist mindset that is currently dominating society, rooted in unlimited economic growth unperceptive to its social and environmental impact, cannot resolve the converging environmental, social and economic crises we now face. The primary aim of this freee course, Understanding the environment: Thinking styles and models, is to encourage the shift away from reductionist and human centred thinking towards a holistic and ecological worldview. First published on Tue, 29 Mar 2016 as Understanding the environment: Thinking styles and models. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 There is increasing recognition that the reductionist mindset that is currently dominating society, rooted in unlimited economic growth unperceptive to its social and environmental impact, cannot resolve the converging environmental, social and economic crises we now face. The primary aim of this freee course, Understanding the environment: Thinking styles and models, is to encourage the shift away from reductionist and human centred thinking towards a holistic and ecological worldview. First published on Tue, 29 Mar 2016 as Understanding the environment: Thinking styles and models. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Tue, 29 Mar 2016 as Understanding the environment: Thinking styles and models. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Tue, 29 Mar 2016 as Understanding the environment: Thinking styles and models. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Environmental Studies | Environmental Studies | communication | communication | transmitters | transmitters

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.011 The Brain and Cognitive Sciences I (MIT) 9.011 The Brain and Cognitive Sciences I (MIT)

Description

Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students. Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.

Subjects

CNS | CNS | nervous system | nervous system | molecular | molecular | cellular | cellular | systems | systems | development | development | cell biology | cell biology | neurons | neurons | neurotransmitters | neurotransmitters | synaptic | synaptic | transmission | transmission | sensory systems | sensory systems | brain | brain | neuroendocrine system | neuroendocrine system | the motor system | the motor system | cortical functions | cortical functions | behavioral | behavioral | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger | neurotransmitter | antidepressant | brain lipid | blood brain barrier | parkinson's disease | seratonin | depression | glutamate | aspartate | NDMA | drug | drug discovery | pharmaceutical | signaling pathway | receptor | spinal cord | marijuana | adensosine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.236 Exploring Pharmacology (MIT) SP.236 Exploring Pharmacology (MIT)

Description

From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential. From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential.

Subjects

pharmacology | pharmacology | central nervous system | central nervous system | neurotransmitters | neurotransmitters | dopamine | dopamine | Parkinson's | Parkinson's | ADHD | ADHD | schizophrenia | schizophrenia | serotonin | serotonin | alcohol | alcohol | barbituates | barbituates | LSD | LSD | acetylcholine | acetylcholine | endocannabinoids | endocannabinoids | endocrine systems | endocrine systems | norepinephrine | norepinephrine | opioids | opioids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.09J Cellular Neurobiology (MIT) 9.09J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system. This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Subjects

neurobiology | neurobiology | structure | structure | function | function | nervous system | nervous system | cellular | cellular | neurons | neurons | excitable cells | excitable cells | biophysics | biophysics | synaptic transmission | synaptic transmission | neurochemistry | neurochemistry | neurodevelopment | neurodevelopment | visual system | visual system | neuromuscular junction | neuromuscular junction | membrane channels | membrane channels | signaling | signaling | ion channels | ion channels | action potential | action potential | neurotransmitters | neurotransmitters | biochemistry | biochemistry | synapses | synapses | learning | learning | memory | memory | axons | axons | hearing | hearing | thermoreception | thermoreception | pain | pain | cognitive function | cognitive function | 9.09 | 9.09 | 7.29 | 7.29

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.29J Cellular Neurobiology (MIT) 7.29J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system. This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Subjects

nervous system | nervous system | neurons | neurons | synaptic transmission | synaptic transmission | neurochemistry | neurochemistry | neurodevelopment | neurodevelopment | membrane channels | membrane channels | resting potential | resting potential | action potential | action potential | synapse | synapse | neurotransmitters | neurotransmitters | receptors | receptors | axon | axon | olfaction | olfaction | thermoreception | thermoreception

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S10 Drugs and the Brain (MIT)

Description

This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi

Subjects

brain | drugs | pharmacology | neurotransmitters | drug mechanisms | brain disease | addiction | schizophrenia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.236 Exploring Pharmacology (MIT)

Description

From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential.

Subjects

pharmacology | central nervous system | neurotransmitters | dopamine | Parkinson's | ADHD | schizophrenia | serotonin | alcohol | barbituates | LSD | acetylcholine | endocannabinoids | endocrine systems | norepinephrine | opioids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.011 The Brain and Cognitive Sciences I (MIT)

Description

Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.

Subjects

CNS | nervous system | molecular | cellular | systems | development | cell biology | neurons | neurotransmitters | synaptic | transmission | sensory systems | brain | neuroendocrine system | the motor system | cortical functions | behavioral | learning | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Legacy of the Games: Health and Wellbeing

Description

This case study examines the potential legacy of the games for the health and wellbeing, including happiness, of the whole population as well, specifically, for older people

Subjects

oxb:060111:022dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | legacy | health | wellbeing | exercise | old age pensioners | OAPs | seniors | neurotransmitters | dopamine | endorphins | emotions | serotonin | The Olympics Impact and Legacy.

License

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.08J Philosophical Issues in Brain Science (MIT)

Description

This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept 'innate'? Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists.

Subjects

brain | philosophy | science | holism | cultural object | contemporary media | society | cultural assumptions | neuroscience | anthropology | history | semiotics | cognitive sciences | historical views | digital images | psychopharmacology | mental illness | neurotransmitters | brain science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Understanding the environment: Thinking styles and models

Description

There is increasing recognition that the reductionist mindset that is currently dominating society rooted in unlimited economic growth unperceptive to its social and environmental impact cannot resolve the converging environmental social and economic crises we now face. The primary aim of this freee course

Subjects

Environmental Studies | communication | transmitters

License

Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0 Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0

Site sourced from

http://www.open.edu/openlearn/feeds/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Addiction and neural ageing

Description

This unit looks at two topics that are of immense worldwide social, economic, ethical, and political importance – ‘addiction’ and ‘neural ageing’. You will develop a Master's level approach to the study of specific issues within these two important subject areas.

Subjects

addiction | neural_ageing | science and nature | aging | brain | dementia | drugs | environment | genes | genetics | memory | neurodegeneration | neuroscience | neurotransmitters | psychology | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.29J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Subjects

nervous system | neurons | synaptic transmission | neurochemistry | neurodevelopment | membrane channels | resting potential | action potential | synapse | neurotransmitters | receptors | axon | olfaction | thermoreception

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Legacy of the Games: Health and Wellbeing

Description

This case study examines the potential legacy of the games for the health and wellbeing, including happiness, of the whole population as well, specifically, for older people

Subjects

oxb:060111:022dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | legacy | health | wellbeing | exercise | old age pensioners | OAPs | seniors | neurotransmitters | dopamine | endorphins | emotions | serotonin | The Olympics Impact and Legacy.

License

This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.011 The Brain and Cognitive Sciences I (MIT)

Description

Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.

Subjects

CNS | nervous system | molecular | cellular | systems | development | cell biology | neurons | neurotransmitters | synaptic | transmission | sensory systems | brain | neuroendocrine system | the motor system | cortical functions | behavioral | learning | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.011 The Brain and Cognitive Sciences I (MIT)

Description

Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.

Subjects

CNS | nervous system | molecular | cellular | systems | development | cell biology | neurons | neurotransmitters | synaptic | transmission | sensory systems | brain | neuroendocrine system | the motor system | cortical functions | behavioral | learning | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata