Searching for transport : 1011 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1.221J Transportation Systems (MIT) 1.221J Transportation Systems (MIT)

Description

This subject introduces transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems. Underlying principles governing transportation planning, investment, operations, and maintenance. System performance and level-of-service metrics and the determinants of transportation travel demand. Design of transportation services and facilities for various modes and intermodal operations. This subject introduces transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems. Underlying principles governing transportation planning, investment, operations, and maintenance. System performance and level-of-service metrics and the determinants of transportation travel demand. Design of transportation services and facilities for various modes and intermodal operations.

Subjects

transportation systems | transportation systems | large-scale integrated systems | large-scale integrated systems | passenger transportation systems | passenger transportation systems | freight transportation systems | freight transportation systems | transportation planning | transportation planning | transportation investment | transportation investment | transportation operations | transportation operations | transportation maintenance | transportation maintenance | system performance | system performance | level of service metrics | level of service metrics | level of service determinants | level of service determinants | design of transportation services | design of transportation services | intermodal transportation | intermodal transportation | 1.221 | 1.221 | 11.527 | 11.527 | ESD.201 | ESD.201

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.221J Transportation Systems (MIT) 1.221J Transportation Systems (MIT)

Description

Approaching transportation as a complex, large-scale, integrated, open system (CLIOS), this course strives to be an interdisciplinary systems subject in the "open" sense. It introduces qualitative modeling ideas and various techniques and philosophies of modeling complex transportation enterprises. It also introduces conceptual frameworks for qualitative analysis, such as frameworks for regional strategic planning, institutional change analysis, and new technology development and deployment. And it covers transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems are covered, along with underlying principles governin Approaching transportation as a complex, large-scale, integrated, open system (CLIOS), this course strives to be an interdisciplinary systems subject in the "open" sense. It introduces qualitative modeling ideas and various techniques and philosophies of modeling complex transportation enterprises. It also introduces conceptual frameworks for qualitative analysis, such as frameworks for regional strategic planning, institutional change analysis, and new technology development and deployment. And it covers transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems are covered, along with underlying principles governin

Subjects

transportation systems | transportation systems | large-scale integrated systems | large-scale integrated systems | passenger transportation systems | passenger transportation systems | freight transportation systems | freight transportation systems | transportation planning | transportation planning | transportation investment | transportation investment | transportation operations | transportation operations | transportation maintenance | transportation maintenance | system performance | system performance | level of service metrics | level of service metrics | level of service determinants | level of service determinants | design of transportation services | design of transportation services | intermodal transportation | intermodal transportation | 1.221 | 1.221 | 11.527 | 11.527 | ESD.201 | ESD.201 | 11.527J11.527 | 11.527J11.527

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.061 Transport Processes in the Environment (MIT) 1.061 Transport Processes in the Environment (MIT)

Description

This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport. This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.

Subjects

river systems | river systems | lake systems | lake systems | scalar transport in environmental flows | scalar transport in environmental flows | momentum transport in environmental flows | momentum transport in environmental flows | stratification in lakes | stratification in lakes | buoyancy-driven flows | buoyancy-driven flows | settling and coagulation | settling and coagulation | air-water exchange | air-water exchange | bed-water exchange | bed-water exchange | phase partitioning | phase partitioning | dissolution | dissolution | boundary layers | boundary layers | molecular diffusion | molecular diffusion | turbulent diffusion | turbulent diffusion | water transportation | water transportation | advection | advection | aquatic systems | aquatic systems | conservation of mass | conservation of mass | derivation | derivation | Diffusion | Diffusion | dispersion | dispersion | environmental flows | environmental flows | instantaneous point source | instantaneous point source | lakes | lakes | mass | mass | transport | transport | particle transport | particle transport | rivers | rivers | scaling | scaling | turbulence | turbulence | water flow | water flow

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.061 Transport Processes in the Environment (MIT) 1.061 Transport Processes in the Environment (MIT)

Description

Includes audio/video content: AV faculty introductions. This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport. Includes audio/video content: AV faculty introductions. This class serves as an introduction to mass transport in environmental flows, with emphasis given to river and lake systems. The class will cover the derivation and solutions to the differential form of mass conservation equations. Class topics to be covered will include: molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange and particle transport.

Subjects

river systems | river systems | lake systems | lake systems | scalar transport in environmental flows | scalar transport in environmental flows | momentum transport in environmental flows | momentum transport in environmental flows | stratification in lakes | stratification in lakes | buoyancy-driven flows | buoyancy-driven flows | settling and coagulation | settling and coagulation | air-water exchange | air-water exchange | bed-water exchange | bed-water exchange | phase partitioning | phase partitioning | dissolution | dissolution | boundary layers | boundary layers | molecular diffusion | molecular diffusion | turbulent diffusion | turbulent diffusion | water transportation | water transportation | advection | advection | aquatic systems | aquatic systems | conservation of mass | conservation of mass | derivation | derivation | Diffusion | Diffusion | dispersion | dispersion | environmental flows | environmental flows | instantaneous point source | instantaneous point source | lakes | lakes | mass | mass | transport | transport | particle transport | particle transport | rivers | rivers | scaling | scaling | turbulence | turbulence | water flow | water flow

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.886 Air Transportation Systems Architecting (MIT) 16.886 Air Transportation Systems Architecting (MIT)

Description

This course addresses the architecting of air transportation systems. The focus is on the conceptual phase of product definition, including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. It centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include: the Very Large Transport Aircraft, a Supersonic Business Jet, and a Next Generation Cargo System. The course identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems. This course addresses the architecting of air transportation systems. The focus is on the conceptual phase of product definition, including technical, economic, market, environmental, regulatory, legal, manufacturing, and societal factors. It centers on a realistic system case study and includes a number of lectures from industry and government. Past examples include: the Very Large Transport Aircraft, a Supersonic Business Jet, and a Next Generation Cargo System. The course identifies the critical system level issues and analyzes them in depth via student team projects and individual assignments. The overall goal of the semester is to produce a business plan and a system specifications document that can be used to assess candidate systems.

Subjects

Air transportation | Air transportation | air transport | air transport | air transportation systems | air transportation systems | product definition | product definition | air transportation industry | air transportation industry | system case study | system case study | very large transport aircraft | very large transport aircraft | supersonic business jet | supersonic business jet | next generation cargo system | next generation cargo system | business plan | business plan | system specifications document | system specifications document

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.221J Transportation Systems (MIT)

Description

Approaching transportation as a complex, large-scale, integrated, open system (CLIOS), this course strives to be an interdisciplinary systems subject in the "open" sense. It introduces qualitative modeling ideas and various techniques and philosophies of modeling complex transportation enterprises. It also introduces conceptual frameworks for qualitative analysis, such as frameworks for regional strategic planning, institutional change analysis, and new technology development and deployment. And it covers transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems are covered, along with underlying principles governin

Subjects

transportation systems | large-scale integrated systems | passenger transportation systems | freight transportation systems | transportation planning | transportation investment | transportation operations | transportation maintenance | system performance | level of service metrics | level of service determinants | design of transportation services | intermodal transportation | 1.221 | 11.527 | ESD.201 | 11.527J11.527

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.221J Transportation Systems (MIT)

Description

Approaching transportation as a complex, large-scale, integrated, open system (CLIOS), this course strives to be an interdisciplinary systems subject in the "open" sense. It introduces qualitative modeling ideas and various techniques and philosophies of modeling complex transportation enterprises. It also introduces conceptual frameworks for qualitative analysis, such as frameworks for regional strategic planning, institutional change analysis, and new technology development and deployment. And it covers transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems are covered, along with underlying principles governin

Subjects

transportation systems | large-scale integrated systems | passenger transportation systems | freight transportation systems | transportation planning | transportation investment | transportation operations | transportation maintenance | system performance | level of service metrics | level of service determinants | design of transportation services | intermodal transportation | 1.221 | 11.527 | ESD.201 | 11.527J11.527

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.221J Transportation Systems (MIT)

Description

This subject introduces transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems. Underlying principles governing transportation planning, investment, operations, and maintenance. System performance and level-of-service metrics and the determinants of transportation travel demand. Design of transportation services and facilities for various modes and intermodal operations.

Subjects

transportation systems | large-scale integrated systems | passenger transportation systems | freight transportation systems | transportation planning | transportation investment | transportation operations | transportation maintenance | system performance | level of service metrics | level of service determinants | design of transportation services | intermodal transportation | 1.221 | 11.527 | ESD.201

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.221J Transportation Systems (MIT)

Description

Approaching transportation as a complex, large-scale, integrated, open system (CLIOS), this course strives to be an interdisciplinary systems subject in the "open" sense. It introduces qualitative modeling ideas and various techniques and philosophies of modeling complex transportation enterprises. It also introduces conceptual frameworks for qualitative analysis, such as frameworks for regional strategic planning, institutional change analysis, and new technology development and deployment. And it covers transportation as a large-scale, integrated system that interacts directly with the social, political, and economic aspects of contemporary society. Fundamental elements and issues shaping traveler and freight transportation systems are covered, along with underlying principles governin

Subjects

transportation systems | large-scale integrated systems | passenger transportation systems | freight transportation systems | transportation planning | transportation investment | transportation operations | transportation maintenance | system performance | level of service metrics | level of service determinants | design of transportation services | intermodal transportation | 1.221 | 11.527 | ESD.201 | 11.527J11.527

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.021J Quantitative Physiology: Cells and Tissues (MIT) 6.021J Quantitative Physiology: Cells and Tissues (MIT)

Description

This course is jointly offered through four departments, available to both undergraduates and graduates. This course introduces the principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Topics covered include: mass transport through membranes (diffusion, osmosis, chemically mediated, and active transport), electric properties of cells (ion transport), equilibrium, resting, and action potentials, kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the course concepts. Students engage in extensive written and oral communication exercises. This course is worth 4 Engineering Design Points.Technical RequirementsMATLAB® software is required to run the .m files f This course is jointly offered through four departments, available to both undergraduates and graduates. This course introduces the principles of mass transport and electrical signal generation for biological membranes, cells, and tissues. Topics covered include: mass transport through membranes (diffusion, osmosis, chemically mediated, and active transport), electric properties of cells (ion transport), equilibrium, resting, and action potentials, kinetic and molecular properties of single voltage-gated ion channels. Laboratory and computer exercises illustrate the course concepts. Students engage in extensive written and oral communication exercises. This course is worth 4 Engineering Design Points.Technical RequirementsMATLAB® software is required to run the .m files f

Subjects

quantitative physiology | quantitative physiology | cells | cells | tissues | tissues | mass transport | mass transport | electrical signal generation | electrical signal generation | biological membranes | biological membranes | membranes | membranes | diffusion | diffusion | osmosis | osmosis | chemically mediated transport | chemically mediated transport | active transport | active transport | ion transport | ion transport | 6.021 | 6.021 | 2.791 | 2.791 | 2.794 | 2.794 | 6.521 | 6.521 | BE.370 | BE.370 | BE.470 | BE.470 | HST.541 | HST.541

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.223J Transportation Policy, Strategy, and Management (MIT) 1.223J Transportation Policy, Strategy, and Management (MIT)

Description

This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization. This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization.

Subjects

public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems | public transportation systems | pollution | pollution | infrastructure | infrastructure | government regulation | government regulation | public policy | public policy | strategic planning management | strategic planning management | labor relations | labor relations | maintenance planning | maintenance planning | administration | administration | financing | financing | marketing policy | marketing policy | fare policy | fare policy | management information | management information | decision support systems | decision support systems | transit industry | transit industry | service provision | service provision | private sector | private sector | alternative models of decision-making | alternative models of decision-making | strategic planning | strategic planning | stakeholder valuation and analysis | stakeholder valuation and analysis | government-based regulation and cooperation | government-based regulation and cooperation | transportation enterprise | transportation enterprise | disaster communications | disaster communications | systems safety | systems safety | change management | change management | and the impact of globalization | and the impact of globalization | the impact of globalization | the impact of globalization | 1.223 | 1.223 | ESD.203 | ESD.203

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.021J Quantitative Physiology: Cells and Tissues (MIT) 6.021J Quantitative Physiology: Cells and Tissues (MIT)

Description

In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the i In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the i

Subjects

quantitative physiology | quantitative physiology | cells | cells | tissues | tissues | mass transport | mass transport | electrical signal generation | electrical signal generation | biological membranes | biological membranes | membranes | membranes | diffusion | diffusion | osmosis | osmosis | chemically mediated transport | chemically mediated transport | active transport | active transport | ion transport | ion transport | equilibrium potential | equilibrium potential | resting potential | resting potential | action potential | action potential | voltage-gated ion channels | voltage-gated ion channels | 6.021 | 6.021 | 2.791 | 2.791 | 2.794 | 2.794 | 6.521 | 6.521 | 20.370 | 20.370 | 20.470 | 20.470 | HST.541 | HST.541

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.103 Microscopic Theory of Transport (MIT) 22.103 Microscopic Theory of Transport (MIT)

Description

Transport is among the most fundamental and widely studied phenomena in science and engineering. This subject will lay out the essential concepts and current understanding, with emphasis on the molecular view, that cut across all disciplinary boundaries. (Suitable for all students in research.) Broad perspectives of transport phenomena From theory and models to computations and simulations Micro/macro coupling Current research insights Transport is among the most fundamental and widely studied phenomena in science and engineering. This subject will lay out the essential concepts and current understanding, with emphasis on the molecular view, that cut across all disciplinary boundaries. (Suitable for all students in research.) Broad perspectives of transport phenomena From theory and models to computations and simulations Micro/macro coupling Current research insights

Subjects

molecular view | molecular view | transport phenomena | transport phenomena | theory | theory | models | models | computations | computations | simulations | simulations | micro/macro coupling | micro/macro coupling | microscopic collisions | microscopic collisions | transport coefficients | transport coefficients | particle transport | particle transport | radiation transport | radiation transport | microscopic kinetic equation | microscopic kinetic equation | boltzmann equation | boltzmann equation | practical engineering fluid models | practical engineering fluid models | kinetic model | kinetic model | nuclear cross sections | nuclear cross sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.223J Transportation Policy, Strategy, and Management (MIT) 1.223J Transportation Policy, Strategy, and Management (MIT)

Description

This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization. This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization.

Subjects

public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems | public transportation systems | pollution | pollution | infrastructure | infrastructure | government regulation | government regulation | public policy | public policy | strategic planning management | strategic planning management | labor relations | labor relations | maintenance planning | maintenance planning | administration | administration | financing | financing | marketing policy | marketing policy | fare policy | fare policy | management information | management information | decision support systems | decision support systems | transit industry | transit industry | service provision | service provision | private sector | private sector | alternative models of decision-making | alternative models of decision-making | strategic planning | strategic planning | stakeholder valuation and analysis | stakeholder valuation and analysis | government-based regulation and cooperation | government-based regulation and cooperation | transportation enterprise | transportation enterprise | disaster communications | disaster communications | systems safety | systems safety | change management | change management | and the impact of globalization | and the impact of globalization | the impact of globalization | the impact of globalization | 1.223 | 1.223 | ESD.203 | ESD.203

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanotechnology | nanoscale | nanoscale | transport phenomena | transport phenomena | photons | photons | electrons | electrons | phonons | phonons | energy carriers | energy carriers | energy transport | energy transport | heat transport | heat transport | energy levels | energy levels | statistical behavior | statistical behavior | internal energy | internal energy | waves and particles | waves and particles | scattering | scattering | heat generation | heat generation | Boltzmann equation | Boltzmann equation | classical laws | classical laws | microtechnology | microtechnology | crystal | crystal | lattice | lattice | quantum oscillator | quantum oscillator | laudaurer | laudaurer | nanotube | nanotube | Louiville equation | Louiville equation | X-ray | X-ray | blackbody | blackbody | quantum well | quantum well | Fourier | Fourier | Newton | Newton | Ohm | Ohm | thermoelectric effect | thermoelectric effect | Brownian motion | Brownian motion | surface tension | surface tension | van der Waals potential. | van der Waals potential. | van der Waals potential | van der Waals potential

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.061 Transport Processes in the Environment (MIT) 1.061 Transport Processes in the Environment (MIT)

Description

Introduction to momentum and scalar transport in environmental flows, with emphasis given to river and lake systems. Derivation and solutions to the differential form of mass conservation equations. Topics include: molecular and turbulent diffusion, boundary layers, dissolution, phase partitioning, bed-water exchange, air-water exchange, settling and coagulation, buoyancy-driven flows, and stratification in lakes.Technical RequirementsRealOne™ Player software is required to run the .rm files found on this course site.RealOne™ is a trademark or a registered trademark of RealNetworks, Inc.  Introduction to momentum and scalar transport in environmental flows, with emphasis given to river and lake systems. Derivation and solutions to the differential form of mass conservation equations. Topics include: molecular and turbulent diffusion, boundary layers, dissolution, phase partitioning, bed-water exchange, air-water exchange, settling and coagulation, buoyancy-driven flows, and stratification in lakes.Technical RequirementsRealOne™ Player software is required to run the .rm files found on this course site.RealOne™ is a trademark or a registered trademark of RealNetworks, Inc. 

Subjects

river systems | river systems | lake systems | lake systems | scalar transport in environmental flows | scalar transport in environmental flows | momentum transport in environmental flows | momentum transport in environmental flows | stratification in lakes | stratification in lakes | buoyancy-driven flows | buoyancy-driven flows | settling and coagulation | settling and coagulation | air-water exchange | air-water exchange | bed-water exchange | bed-water exchange | phase partitioning | phase partitioning | dissolution | dissolution | boundary layers | boundary layers | molecular diffusion | molecular diffusion | turbulent diffusion | turbulent diffusion | water transportation | water transportation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.212J An Introduction to Intelligent Transportation Systems (MIT) 1.212J An Introduction to Intelligent Transportation Systems (MIT)

Description

Intelligent Transportation Systems (ITS) represent a major transition in transportation on many dimensions. This course considers ITS as a lens through which one can view many transportation and societal issues. ITS is an international program intended to improve the effectiveness and efficiency of surface transportation systems through advanced technologies in information systems, communications, and sensors. In the United States, ITS represents the major post-Interstate-era program for advancing surface transportation in highways and public transportation, and is potentially comparable to the air traffic control system in impact.Technical RequirementsMicrosoft® Powerpoint® software is recommended for viewing the .ppt files found on this course site. Free&#1 Intelligent Transportation Systems (ITS) represent a major transition in transportation on many dimensions. This course considers ITS as a lens through which one can view many transportation and societal issues. ITS is an international program intended to improve the effectiveness and efficiency of surface transportation systems through advanced technologies in information systems, communications, and sensors. In the United States, ITS represents the major post-Interstate-era program for advancing surface transportation in highways and public transportation, and is potentially comparable to the air traffic control system in impact.Technical RequirementsMicrosoft® Powerpoint® software is recommended for viewing the .ppt files found on this course site. Free&#1

Subjects

intelligent transportation systems | intelligent transportation systems | ITS | ITS | technological systems | technological systems | institutional aspects of ITS | institutional aspects of ITS | system architecture | system architecture | congestion pricing | congestion pricing | public | public | Surface transportation systems | Surface transportation systems | information systems | information systems | communications | communications | sensors | sensors | post-Interstate | post-Interstate | highways | highways | public transportation | public transportation | network models | network models | 1.212 | 1.212 | ESD.221 | ESD.221

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.259J Transit Management (MIT) 1.259J Transit Management (MIT)

Description

1.259J discusses management methods of relevance to public transportation systems. Topics include: strategic planning management; labor relations; maintenance planning and administration; financing; marketing and fare policy; and management information and decision support systems. The course focuses on how these general management tasks are addressed in the transit industry and presents alternative strategies. It identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation. 1.259J discusses management methods of relevance to public transportation systems. Topics include: strategic planning management; labor relations; maintenance planning and administration; financing; marketing and fare policy; and management information and decision support systems. The course focuses on how these general management tasks are addressed in the transit industry and presents alternative strategies. It identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation.

Subjects

public transportation systems | public transportation systems | strategic planning management | strategic planning management | labor relations | labor relations | maintenance planning | maintenance planning | administration | administration | financing | financing | marketing policy | marketing policy | fare policy | fare policy | management information | management information | decision support systems | decision support systems | transit industry | transit industry | service provision | service provision | private sector | private sector | management methods | management methods | urban public transportation systems | urban public transportation systems | maintenance administration | maintenance administration | public transport service organizations | public transport service organizations | privatization | privatization | deregulation | deregulation | performance assessment | performance assessment | budgeting | budgeting | pricing | pricing | budgets | budgets | workforce planning | workforce planning | workforce management | workforce management | 1.259 | 1.259 | 11.542 | 11.542 | ESD.227 | ESD.227

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.258J Public Transportation Service and Operations Planning (MIT) 1.258J Public Transportation Service and Operations Planning (MIT)

Description

This course describes the evolution and role of urban public transportation modes, systems, and services, focusing on bus and rail. Technological characteristics and their impacts on capacity, service quality, and cost are described. Current practice and new methods for data collection and analysis, performance monitoring, route design, frequency determination, and vehicle and crew scheduling are also discussed. In addition, the effect of pricing policy and service quality on ridership and methods for estimating costs associated with proposed service changes are presented, together with means to improve operations through real time intervention.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free&#16 This course describes the evolution and role of urban public transportation modes, systems, and services, focusing on bus and rail. Technological characteristics and their impacts on capacity, service quality, and cost are described. Current practice and new methods for data collection and analysis, performance monitoring, route design, frequency determination, and vehicle and crew scheduling are also discussed. In addition, the effect of pricing policy and service quality on ridership and methods for estimating costs associated with proposed service changes are presented, together with means to improve operations through real time intervention.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free&#16

Subjects

urban public transportation modes | urban public transportation modes | systems | systems | services | services | bus | bus | rail | rail | capacity | capacity | service quality | service quality | cost | cost | data collection | data collection | analysis | analysis | performance monitoring | performance monitoring | route design | route design | frequency determination | frequency determination | vehicle scheduling | vehicle scheduling | crew scheduling | crew scheduling | pricing policy | pricing policy | ridership | ridership | estimating costs | estimating costs | urban transportation | urban transportation | public transportation systems | public transportation systems | public services | public services | planning | planning | 1.258 | 1.258 | 11.541 | 11.541 | ESD.226 | ESD.226

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.201J Transportation Systems Analysis: Demand and Economics (MIT) 1.201J Transportation Systems Analysis: Demand and Economics (MIT)

Description

The main objective of this course is to give broad insight into the different facets of transportation systems, while providing a solid introduction to transportation demand and cost analyses. As part of the core in the Master of Science in Transportation program, the course will not focus on a specific transportation mode but will use the various modes to apply the theoretical and analytical concepts presented in the lectures and readings. Introduces transportation systems analysis, stressing demand and economic aspects. Covers the key principles governing transportation planning, investment, operations and maintenance. Introduces the microeconomic concepts central to transportation systems. Topics covered include economic theories of the firm, the consumer, and the market, demand models, The main objective of this course is to give broad insight into the different facets of transportation systems, while providing a solid introduction to transportation demand and cost analyses. As part of the core in the Master of Science in Transportation program, the course will not focus on a specific transportation mode but will use the various modes to apply the theoretical and analytical concepts presented in the lectures and readings. Introduces transportation systems analysis, stressing demand and economic aspects. Covers the key principles governing transportation planning, investment, operations and maintenance. Introduces the microeconomic concepts central to transportation systems. Topics covered include economic theories of the firm, the consumer, and the market, demand models,

Subjects

1.201 | 1.201 | 11.545 | 11.545 | ESD.210 | ESD.210 | transportation | transportation | travel demand | travel demand | organizational models | organizational models | consumer theory | consumer theory | project finance | project finance | intelligent transportation systems | intelligent transportation systems | project evaluation | project evaluation | demand modelling | demand modelling | technology | technology | environmental | environmental | energy | energy | economic development | economic development | sustainability | sustainability | urban structure | urban structure | land use | land use | equity | equity | transportation components | transportation components | intermodal combinations | intermodal combinations | quantitative modeling | quantitative modeling | strategic regional planning | strategic regional planning | institutional change analysis | institutional change analysis | large-scale systems | large-scale systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.725J Chemicals in the Environment: Fate and Transport (MIT) 1.725J Chemicals in the Environment: Fate and Transport (MIT)

Description

This core class in the Environmental M.Eng. program is for all students interested in the behavior of chemicals in the environment. The emphasis is on man-made chemicals; their movement through water, air, and soil; and their eventual fate. Physical transport, as well as chemical and biological sources and sinks, are discussed. Linkages to health effects, sources and control, and policy aspects are discussed and debated. This core class in the Environmental M.Eng. program is for all students interested in the behavior of chemicals in the environment. The emphasis is on man-made chemicals; their movement through water, air, and soil; and their eventual fate. Physical transport, as well as chemical and biological sources and sinks, are discussed. Linkages to health effects, sources and control, and policy aspects are discussed and debated.

Subjects

control volumes | control volumes | mass balance | mass balance | advective/dispersive transport | advective/dispersive transport | chemical equilibria | chemical equilibria | mass action | mass action | electroneutrality | electroneutrality | mass conservation | mass conservation | chemical kinetics and partitioning | chemical kinetics and partitioning | river transport | river transport | lakes and wetlands and estuaries | lakes and wetlands and estuaries | sediment transport | sediment transport | bottom sediments | bottom sediments | paleolimnology | paleolimnology | air-water exchange | air-water exchange | major ion chemistry of natural waters | major ion chemistry of natural waters | D'Arcy's Law | D'Arcy's Law | 1.725 | 1.725

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.212J An Introduction to Intelligent Transportation Systems (MIT) 1.212J An Introduction to Intelligent Transportation Systems (MIT)

Description

Intelligent Transportation Systems (ITS) represent a major transition in transportation on many dimensions. This course considers ITS as a lens through which one can view many transportation and societal issues. ITS is an international program intended to improve the effectiveness and efficiency of surface transportation systems through advanced technologies in information systems, communications, and sensors. In the United States, ITS represents the major post-Interstate-era program for advancing surface transportation in highways and public transportation, and is potentially comparable to the air traffic control system in impact. The readings for the class come primarily from the instructor's own text: Sussman, Joseph. Perspectives on Intelligent Transportation Systems (ITS). New York, Intelligent Transportation Systems (ITS) represent a major transition in transportation on many dimensions. This course considers ITS as a lens through which one can view many transportation and societal issues. ITS is an international program intended to improve the effectiveness and efficiency of surface transportation systems through advanced technologies in information systems, communications, and sensors. In the United States, ITS represents the major post-Interstate-era program for advancing surface transportation in highways and public transportation, and is potentially comparable to the air traffic control system in impact. The readings for the class come primarily from the instructor's own text: Sussman, Joseph. Perspectives on Intelligent Transportation Systems (ITS). New York,

Subjects

intelligent transportation systems | intelligent transportation systems | ITS | ITS | technological systems | technological systems | institutional aspects of ITS | institutional aspects of ITS | system architecture | system architecture | congestion pricing | congestion pricing | public | public | Surface transportation systems | Surface transportation systems | information systems | information systems | communications | communications | sensors | sensors | post-Interstate | post-Interstate | highways | highways | public transportation | public transportation | network models | network models | 1.212 | 1.212 | ESD.221 | ESD.221 | public partnerships | public partnerships | private partnerships | private partnerships | industrial policy | industrial policy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.225J Transportation Flow Systems (MIT) 1.225J Transportation Flow Systems (MIT)

Description

Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester. Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester.

Subjects

transportation | transportation | transportation flow systems | transportation flow systems | traffic | traffic | traffic flow | traffic flow | networks | networks | transportation networks | transportation networks | flow modeling | flow modeling | flow operations | flow operations | deteministic models | deteministic models | probabilistic models | probabilistic models | queuing theory | queuing theory | queues | queues | traffic assignment | traffic assignment | case studies | case studies | cumulative plots | cumulative plots | airport runway capacity | airport runway capacity | runway capacity | runway capacity | road traffic | road traffic | shortest paths | shortest paths | optimizations | optimizations | highway control | highway control | ramp metering | ramp metering | simulation models | simulation models | isolated signals | isolated signals | operations | operations | operational problems | operational problems | air traffic operation | air traffic operation | air | air | road | road | component | component | 1.225 | 1.225 | ESD.205 | ESD.205

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.224J Carrier Systems (MIT) 1.224J Carrier Systems (MIT)

Description

Carrier systems involve the design, operation and management of transportation networks, assets, personnel, freight and passengers. In this course, we will present models and tools for analyzing, optimizing, planning, managing and controlling carrier systems. Carrier systems involve the design, operation and management of transportation networks, assets, personnel, freight and passengers. In this course, we will present models and tools for analyzing, optimizing, planning, managing and controlling carrier systems.

Subjects

carrier systems | carrier systems | design | design | operation | operation | management | management | personnel | personnel | freight and passengers | freight and passengers | models and tools for analyzing | models and tools for analyzing | optimization | optimization | planning | planning | managing and controlling | managing and controlling | transportation networks | transportation networks | assets | assets | freight | freight | passengers | passengers | models | models | tools | tools | analyzing | analyzing | optimizing | optimizing | managing | managing | controlling | controlling | linear programming | linear programming | software | software | integer programming | integer programming | direct transportation | direct transportation | procurement | procurement | transit vehicle scheduling | transit vehicle scheduling | transit crew scheduling | transit crew scheduling | airline routing | airline routing | real-time operations control | real-time operations control | freight transportation | freight transportation | analysis | analysis | plans | plans | control | control | designing | designing | 1.224 | 1.224 | ESD.204 | ESD.204

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.730 Physics for Solid-State Applications (MIT) 6.730 Physics for Solid-State Applications (MIT)

Description

This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling. This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling.

Subjects

physics | physics | solid state application | solid state application | quantum model | quantum model | electron | electron | lattice vibration | lattice vibration | electronic transport | electronic transport | heat capacity | heat capacity | elastic properties | elastic properties | cystal lattice | cystal lattice | electronic energy band | electronic energy band | phonon dispersion relatons | phonon dispersion relatons | effective mass theorem | effective mass theorem | motion equation | motion equation | impurity state | impurity state | semiconductor | semiconductor | band structure | band structure | transport properties | transport properties | quantum theory of solids | quantum theory of solids | quasifermi | quasifermi | Boltzmann transport | Boltzmann transport | device modeling | device modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata