Searching for triclinic : 2 results found | RSS Feed for this search

Description

This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity. This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.Subjects

crystallography | crystallography | rotation | rotation | translation | translation | lattice | lattice | plane | plane | point group | point group | space group | space group | motif | motif | glide plane | glide plane | mirror plane | mirror plane | reflection | reflection | spherical trigonometry | spherical trigonometry | binary compound | binary compound | coordination number | coordination number | ion | ion | crystal structure | crystal structure | tetrahedral | tetrahedral | octahedral | octahedral | packing | packing | monoclinic | monoclinic | triclinic | triclinic | orthorhombic | orthorhombic | cell | cell | screw axis | screw axis | eigenvector | eigenvector | stress | stress | strain | strain | anisotropy | anisotropy | anisotropic | anisotropic | piezoelectric | piezoelectricLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.60 Symmetry, Structure, and Tensor Properties of Materials (MIT)

Description

This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.Subjects

crystallography | rotation | translation | lattice | plane | point group | space group | motif | glide plane | mirror plane | reflection | spherical trigonometry | binary compound | coordination number | ion | crystal structure | tetrahedral | octahedral | packing | monoclinic | triclinic | orthorhombic | cell | screw axis | eigenvector | stress | strain | anisotropy | anisotropic | piezoelectricLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata