Searching for trophy : 96 results found | RSS Feed for this search

1 2 3 4

8.701 Introduction to Nuclear and Particle Physics (MIT) 8.701 Introduction to Nuclear and Particle Physics (MIT)

Description

The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites. The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites.

Subjects

QED | QED | Quantum ElectroDynamics | Quantum ElectroDynamics | QFD | QFD | Quantum FlavorDynamics | Quantum FlavorDynamics | QCD | QCD | Quantum ChromoDynamics | Quantum ChromoDynamics | Relativistic Kinematics | Relativistic Kinematics | Accelerators | Accelerators | Detectors | Detectors | Quark Model | Quark Model | Lepton-Nucleon scattering | Lepton-Nucleon scattering | QFT | QFT | Quantum Field Theory | Quantum Field Theory | nuclear physics | nuclear physics | nuclear force | nuclear force | Relativistic heavy-ion physics | Relativistic heavy-ion physics | Particle astrophysics | Particle astrophysics | nuclear astrophysics | nuclear astrophysics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function. This course covers topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. In lectures and discussion of papers, emphasis is placed on human and animal models of hippocampal mechanisms and function.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction To Plasma Physics I (MIT) 22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject. Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | thermonuclear fusion | thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | plasma confinement schemes | | plasma confinement schemes | | MHD models | MHD models | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years. Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Therapy for muscular dystrophy in the new genetics era

Description

From the 2010 Alumni Weekend. Duchene Muscular Dystrophy (DMD) is a genetic muscle wasting disease that causes great suffering to those experiencing it. Dr Kay Davies talks about the advances in molecular genetics which could help treat DMD. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | 2010-09-25

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Therapy for muscular dystrophy in the new genetics era

Description

From the 2010 Alumni Weekend. Duchene Muscular Dystrophy (DMD) is a genetic muscle wasting disease that causes great suffering to those experiencing it. Dr Kay Davies talks about the advances in molecular genetics which could help treat DMD. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | 2010-09-25

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Interior of the Drawing Room, Mar Lodge Interior of the Drawing Room, Mar Lodge

Description

Subjects

blackandwhite | blackandwhite | lamp | lamp | fashion | fashion | stag | stag | dress | dress | hunting | hunting | lodge | lodge | taxidermy | taxidermy | decorating | decorating | curtains | curtains | trophy | trophy | royalty | royalty | drawingroom | drawingroom | royalfamily | royalfamily | 1863 | 1863 | aristocracy | aristocracy | tablechairs | tablechairs | marlodge | marlodge | nationalgalleriesofscotland | nationalgalleriesofscotland | stripedstockings | stripedstockings | staghead | staghead | earlandcountessoffife | earlandcountessoffife | braemargathering1863 | braemargathering1863 | victoralbertprout | victoralbertprout | mountedantlerdeer | mountedantlerdeer | sittingroomlounge | sittingroomlounge | greatbritainvictorain | greatbritainvictorain

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=30835311@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Antibiotics, Toxins, and Protein Engineering (MIT) 7.344 Antibiotics, Toxins, and Protein Engineering (MIT)

Description

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und

Subjects

lethal poison | lethal poison | Ricin | Ricin | Diphtheria | Diphtheria | contagious bacterial disease | contagious bacterial disease | tetracycline | tetracycline | protein synthesis | protein synthesis | drug resistance | drug resistance | protein engineering | protein engineering | cystic fibrosis | cystic fibrosis | muscular dystrophy | muscular dystrophy | ribosome | ribosome | ribosomal proteins | ribosomal proteins | rRNA | rRNA | mRNA | mRNA | tRNA | tRNA | translation factors | translation factors | genetic code | genetic code | E. coli ribosome | E. coli ribosome | prokaryotes | prokaryotes | eukaryotes | eukaryotes | Shiga | Shiga | Diphtheria toxin | Diphtheria toxin | Pseudomonas exotoxin A | Pseudomonas exotoxin A | Chloramphenicol | Chloramphenicol | Aminoglycoside | Aminoglycoside

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.901 Astrophysics I (MIT) 8.901 Astrophysics I (MIT)

Description

This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter. This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.

Subjects

Historical astronomy | Historical astronomy | astronomical instrumentation | astronomical instrumentation | Stars: spectra | Stars: spectra | classification | classification | stellar structure equations | stellar structure equations | stellar evolution | stellar evolution | stellar oscillations | stellar oscillations | degenerate and collapsed stars | degenerate and collapsed stars | radio pulsars | radio pulsars | interacting binary systems | interacting binary systems | accretion disks | accretion disks | x-ray sources | x-ray sources | gravitational lenses | gravitational lenses | dark matter | dark matter | interstellar medium: HII regions | interstellar medium: HII regions | supernova remnants | supernova remnants | molecular clouds | molecular clouds | dust | dust | radiative transfer | radiative transfer | Jeans' mass | Jeans' mass | star formation | star formation | high-energy astrophysics | high-energy astrophysics | Compton scattering | Compton scattering | bremsstrahlung | bremsstrahlung | synchrotron radiation | synchrotron radiation | cosmic rays | cosmic rays | Galactic stellar distributions | Galactic stellar distributions | Oort constants | Oort constants | Oort limit | Oort limit | globular clusters. | globular clusters. | globular clusters | globular clusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers. This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus | synapse | synapse | aplysia | aplysia | drosophlia | drosophlia | NMDA | NMDA | semantic memory | semantic memory | working memory | working memory | short-term memory | short-term memory | alzheimer's disease | alzheimer's disease | skill learning | skill learning | mirror neurons | mirror neurons | short-term | short-term | long-term | long-term

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT) 9.110J Neurology, Neuropsychology, and Neurobiology of Aging (MIT)

Description

Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field. Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. Discussions based on readings taken from primary literature explore the current research in this field.

Subjects

aging | aging | memory loss | memory loss | cognition | cognition | neurodegeneration | neurodegeneration | Parkinson's disease | Parkinson's disease | Alzheimer's disease | Alzheimer's disease | aging brain | aging brain | neurobiology | neurobiology | neurology | neurology | neuropsychology | neuropsychology | brain atrophy | brain atrophy | learning | learning | memory | memory | recollection | recollection | emotional memory | emotional memory | implicit memory | implicit memory | Huntington's disease | Huntington's disease | working memory | working memory | dementia | dementia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.96 Experimental Methods of Adjustable Tetrode Array Neurophysiology (MIT) 9.96 Experimental Methods of Adjustable Tetrode Array Neurophysiology (MIT)

Description

Students will be exposed to all aspects of a cutting-edge technique in modern electrophysiology, in a highly structured, team oriented environment. The research projects will probe the neural mechanisms of learning and memory through tetrode array recordings coupled with patterned microstimulation. Due to the broad nature of tasks to be completed, coupled with the team oriented approach we will be employing, we are interested in students with a wide variety of laboratory experience and skill levels. Students will be exposed to all aspects of a cutting-edge technique in modern electrophysiology, in a highly structured, team oriented environment. The research projects will probe the neural mechanisms of learning and memory through tetrode array recordings coupled with patterned microstimulation. Due to the broad nature of tasks to be completed, coupled with the team oriented approach we will be employing, we are interested in students with a wide variety of laboratory experience and skill levels.

Subjects

electrophysiology | electrophysiology | implant | implant | rodent | rodent | behavioral experiment | behavioral experiment | microdrive array | microdrive array | animal experiment | animal experiment | experimental design | experimental design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.301J Neural Plasticity in Learning and Development (MIT) 9.301J Neural Plasticity in Learning and Development (MIT)

Description

Roles of neural plasticity in learning and memory and in development of invertebrates and mammals. An in-depth critical analysis of current literature of molecular, cellular, genetic, electrophysiological, and behavioral studies. Discussion of original papers supplemented by introductory lectures. Roles of neural plasticity in learning and memory and in development of invertebrates and mammals. An in-depth critical analysis of current literature of molecular, cellular, genetic, electrophysiological, and behavioral studies. Discussion of original papers supplemented by introductory lectures.

Subjects

plasticity | plasticity | learning | learning | memory | memory | invertebrates | invertebrates | mammals | mammals | molecular | molecular | cellular | cellular | genetic | genetic | electrophysiological | electrophysiological | behavior | behavior | 9.301 | 9.301 | 7.98 | 7.98

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.803 Quasi-Balanced Circulations in Oceans and Atmospheres (MIT) 12.803 Quasi-Balanced Circulations in Oceans and Atmospheres (MIT)

Description

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab. This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.

Subjects

hydrostatic balance | hydrostatic balance | geostrophic balance | geostrophic balance | barotropic vorticity equation | barotropic vorticity equation | shallow water equations | shallow water equations | geostrophic adjustment | geostrophic adjustment | stratified atmospheres and oceans | stratified atmospheres and oceans | thermodynamics | thermodynamics | quasi-geostrophic equations | quasi-geostrophic equations | pseudo potential vorticity | pseudo potential vorticity | Rayleigh | Rayleigh | Fjortoft and Chanrey-Stern theorems | Fjortoft and Chanrey-Stern theorems | frontogenesis | frontogenesis | semigeostrophy. | semigeostrophy.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.89J Space Systems Engineering (MIT) 16.89J Space Systems Engineering (MIT)

Description

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).Both lunar surface telescopes as well as orbital locations should be considered.The second half of the class will then pi In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).Both lunar surface telescopes as well as orbital locations should be considered.The second half of the class will then pi

Subjects

16.89 | 16.89 | ESD.352 | ESD.352 | System Requirements Review | System Requirements Review | Preliminary Design Review | Preliminary Design Review | Critical Design Review | Critical Design Review | Conceptual Design Phase | Conceptual Design Phase | Preliminary Design Phase | Preliminary Design Phase | Detailed Design Phase | Detailed Design Phase | astrophysics | astrophysics | Stakeholder Analysis | Stakeholder Analysis | System Architecture | System Architecture | Radio Astronomy | Radio Astronomy | Space Telescope | Space Telescope | Interferometry | Interferometry | Lunar Logistics | Lunar Logistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented. The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.161 Molecular Biology and Genetics in Modern Medicine (MIT) HST.161 Molecular Biology and Genetics in Modern Medicine (MIT)

Description

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics. This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.

Subjects

Genetics | Genetics | genes | genes | genetic disorders | genetic disorders | inborn error | inborn error | muscular dystrophy | muscular dystrophy | PKU | PKU | phenylketoneuria | phenylketoneuria | cancer | cancer | tumors | tumors | gene therapy | gene therapy | disease | disease | birth defects | birth defects | chromosomes | chromosomes | leukemia | leukemia | RNAi | RNAi | hemophilia | hemophilia | thalassemia | thalassemia | deafness | deafness | mutations | mutations | hypertrophic cardiomyopathy | hypertrophic cardiomyopathy | epigenetics | epigenetics | rett syndrome | rett syndrome | prenatal diagnosis | prenatal diagnosis | LOD scores | LOD scores | gene linkage | gene linkage | mitochondrial disorders | mitochondrial disorders | degenerative disorders | degenerative disorders | complex traits | complex traits | Mendelian inheritance | Mendelian inheritance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.542J Quantitative Physiology: Organ Transport Systems (MIT) HST.542J Quantitative Physiology: Organ Transport Systems (MIT)

Description

This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences. This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences.

Subjects

electrocardiogram | electrocardiogram | cardiovascular system | cardiovascular system | cardiovascular physiology | cardiovascular physiology | electrophysiology | electrophysiology | myocardial cells | myocardial cells | electrocardiography | electrocardiography | physiological fluid mechanics | physiological fluid mechanics | respiratory physiology | respiratory physiology | renal physiology | renal physiology | quantitative physiology | quantitative physiology | pulmonary mechanics | pulmonary mechanics | heart | heart | arrhythmia | arrhythmia | pulmonary modeling | pulmonary modeling | clinical electrocardiography | clinical electrocardiography | ECG | ECG | EKG | EKG | ischemia | ischemia | infarction | infarction | vector cardiogram | vector cardiogram | purkinje fibers | purkinje fibers | QRS waveform | QRS waveform | tachycardia | tachycardia | action potential | action potential | depolarization | depolarization | afterdepolarization | afterdepolarization | total lung capacity | total lung capacity | systolic | systolic | diastolic | diastolic | residual volume | residual volume | vital capacity | vital capacity | HST.542 | HST.542 | 2.792 | 2.792 | 20.371J20.371 | 20.371J20.371 | 6.022 | 6.022

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21G.056 Visual Histories: German Cinema 1945 to Present (MIT) 21G.056 Visual Histories: German Cinema 1945 to Present (MIT)

Description

This course is an invitation to German film-making since the end of the Second World War. We investigate how German cinema captured the atmosphere of the immediate post-war years and discuss extensively major works of the "New German Cinema" of the Sixties and Seventies. We also look at examples of East Germany's film production and finally observe the very different roads German cinema has been taking from the 1990's into the present. This course is an invitation to German film-making since the end of the Second World War. We investigate how German cinema captured the atmosphere of the immediate post-war years and discuss extensively major works of the "New German Cinema" of the Sixties and Seventies. We also look at examples of East Germany's film production and finally observe the very different roads German cinema has been taking from the 1990's into the present.

Subjects

German | German | Film | Film | Cinema | Cinema | Movies | Movies | History | History | Intercultural Analyses | Intercultural Analyses | Cinematic Tradition | Cinematic Tradition | Post-War | Post-War | Aesthetics | Aesthetics | German film-making | German film-making | Second World War | Second World War | German Cinema | German Cinema | post-war Germany | post-war Germany | New German Cinema | New German Cinema | East Germany | East Germany | film production | film production | film analysis | film analysis | German cinematic production | German cinematic production | German history | German history | Die Stunde Null | Die Stunde Null | Tr?mmerfilme | Tr?mmerfilme | Catastrophy | Catastrophy | visual histories | visual histories | West Germany | West Germany | America | America | Hollywood | Hollywood | East German Cinema | East German Cinema | Post-unification German Cinema | Post-unification German Cinema | WWII | WWII

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata