Searching for truss : 71 results found | RSS Feed for this search

1 2 3

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Texas and New Orleans, Southern Pacific Bridge just West of MP. 94, Llano, Texas] [Texas and New Orleans, Southern Pacific Bridge just West of MP. 94, Llano, Texas]

Description

Subjects

sp | sp | tno | tno | railroads | railroads | espee | espee | railroadbridges | railroadbridges | trussbridges | trussbridges | bollmantrussrailroadbridge | bollmantrussrailroadbridge

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Chinese Eastern Railway: Second Railroad Bridge over the Sungari River and Pier Stations at Laoshagoo]

Description

Subjects

boats | piers | trains | harbors | railroads | tsr | wharves | cer | transsiberianrailway | railroadbridges | parkertruss | trussbridges | chineseeasternrailway | transmanchurianrailway | camelbacktruss | railroadfreightcars | southmanchuriarailway | chineseeasternrailroad | transmanchurianline | taolaichao | manchurianrailway | chinesefareastrailway

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Health-Station at Foulardi C.E.R-y

Description

Subjects

piers | trains | rivers | walkways | railroads | rowboats | tsr | gazebos | bandstands | wharves | cer | healthresorts | transsiberianrailway | railroadbridges | parkertruss | trussbridges | chineseeasternrailway | transmanchurianrailway | camelbacktruss | hulanergi | fulaerji | chineseeasternrailroad | transmanchurianline | harbinmanzhoulirailway | binzhourailway | fuliardi | fularchi | manchurianrailway | chinesefareastrailway

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

John Scott Russell (on the left) and Isambard Brunel (second from right) during the launch of the 'Great Eastern'.

Description

Reproduction ID: A4557 Maker: Robert Howlett Date: 3 November 1857

Subjects

nationalmaritimemuseum | greateastern | isambardbrunel | cartolas | hat | homens | 1857 | ship | steamship | ssgreateastern | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | isambardkingdombrunel | brunel | leviathan | cablelayingship | cablelaying | millwall | shipyard | shipbuilding | thamesriver | riverthames | shiplaunching | jscottrussell | henrywakefield | wakefield | cl0412 | cl0412s1 | cl0412d8

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Construction of the Cirebon - Kroya Railway Line Bridge across the Kali Serayu River] [Construction of the Cirebon - Kroya Railway Line Bridge across the Kali Serayu River]

Description

Subjects

rivers | rivers | railroads | railroads | railroadbridges | railroadbridges | trussbridges | trussbridges | staterailway | staterailway | railroadconstruction | railroadconstruction | staatsspoorwegen | staatsspoorwegen

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.440 Basic Structural Design (MIT) 4.440 Basic Structural Design (MIT)

Description

This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction. This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction.

Subjects

structural analysis | structural analysis | structural design | structural design | historical structures | historical structures | environment | environment | sustainable construction | sustainable construction | graphical analysis | graphical analysis | environmental assessment | environmental assessment | beam | beam | column | column | truss | truss | frame | frame | arch | arch | structural systems | structural systems | model building | model building | design exercises | design exercises | compression | compression | tension | tension | axial forces | axial forces | structural failures | structural failures | timber | timber | steel | steel | concrete | concrete | sustainable structures | sustainable structures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.11 Mechanics of Materials (MIT) 3.11 Mechanics of Materials (MIT)

Description

Overview of mechanical properties of ceramics, metals, and polymers, emphasizing the role of processing and microstructure in controlling these properties. Basic topics in mechanics of materials including: continuum stress and strain, truss forces, torsion of a circular shaft and beam bending. Design of engineering structures from a materials point of view. Overview of mechanical properties of ceramics, metals, and polymers, emphasizing the role of processing and microstructure in controlling these properties. Basic topics in mechanics of materials including: continuum stress and strain, truss forces, torsion of a circular shaft and beam bending. Design of engineering structures from a materials point of view.

Subjects

beam bending | beam bending | circular shaft bending | circular shaft bending | truss forces | truss forces | continuum stress and strain | continuum stress and strain | polymers | polymers | metals | metals | ceramics | ceramics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.461 Building Technology I: Materials and Construction (MIT) 4.461 Building Technology I: Materials and Construction (MIT)

Description

This course offers an introduction to the history, theory, and construction of basic structural systems as well as an introduction to energy issues in buildings. It emphasizes basic systematic and elemental behavior, principles of structural behavior, and analysis of individual structural elements and strategies for load carrying. The course also introduces fundamental energy topics including thermodynamics, psychrometrics, and comfort. It is a required class for M. Arch. students. This course offers an introduction to the history, theory, and construction of basic structural systems as well as an introduction to energy issues in buildings. It emphasizes basic systematic and elemental behavior, principles of structural behavior, and analysis of individual structural elements and strategies for load carrying. The course also introduces fundamental energy topics including thermodynamics, psychrometrics, and comfort. It is a required class for M. Arch. students.

Subjects

structures | structures | building technology | building technology | construction | construction | static behavior of structures and strength of materials | static behavior of structures and strength of materials | reactions | reactions | truss analysis | truss analysis | stability of structures | stability of structures | stress and strain at a point | stress and strain at a point | shear and bending moment diagrams | shear and bending moment diagrams | stresses in beams | stresses in beams | Mohr's Circle | Mohr's Circle | column buckling | column buckling | deflection of beams | deflection of beams | materials | materials | wood | wood | steel | steel | concrete | concrete

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Deck of the 'Great Eastern'

Description

Reproduction ID: H2415 Maker: Unknown Date: 1865

Subjects

nationalmaritimemuseum | ship | steamship | ssgreateastern | greateastern | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | isambardkingdombrunel | isambardbrunel | brunel | leviathan | cablelayingship | cablelaying

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Captain Halpin and his dog aboard the 'Great Eastern'

Description

Reproduction ID: H1743 Maker: Unknown Date: 1873

Subjects

nationalmaritimemuseum | ship | ssgreateastern | greateastern | isambardkingdombrunel | brunel | steamship | submarinecable | underwatercable | cablelayer | leviathan | dog | isambardbrunel | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | cablelayingship | cablelaying | captainroberthalpin | captroberthalpin | capthalpin | roberthalpin | halpin

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.463 Building Technologies III: Building Structural Systems II (MIT) 4.463 Building Technologies III: Building Structural Systems II (MIT)

Description

This course addresses advanced topics in structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems; expanding to include more complex determinant, indeterminate, long-span and high-rise systems. Some of the topics covered include reinforced concrete, steel and engineered wood design, and an introduction to tensile systems. The contemporary exterior envelope is discussed with an emphasis on the classification of systems, their performance attributes and advanced manufacturing technologies. This course is the second of two graduate structures courses, the first of which is 4.462. They offer an expanded version of the content presented in the undergraduate course, 4.440. This course addresses advanced topics in structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems; expanding to include more complex determinant, indeterminate, long-span and high-rise systems. Some of the topics covered include reinforced concrete, steel and engineered wood design, and an introduction to tensile systems. The contemporary exterior envelope is discussed with an emphasis on the classification of systems, their performance attributes and advanced manufacturing technologies. This course is the second of two graduate structures courses, the first of which is 4.462. They offer an expanded version of the content presented in the undergraduate course, 4.440.

Subjects

structures | structures | building technology | building technology | construction | construction | static behavior of structures and strength of materials | static behavior of structures and strength of materials | reactions | reactions | truss analysis | truss analysis | stability of structures | stability of structures | stress and strain at a point | stress and strain at a point | shear and bending moment diagrams | shear and bending moment diagrams | stresses in beams | stresses in beams | Mohr's Circle | Mohr's Circle | column buckling | column buckling | deflection of beams | deflection of beams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cable Laying Machinery on the 'Great Eastern'

Description

Reproduction ID: H2456 Maker: Unknown Date: 1865-1872

Subjects

nationalmaritimemuseum | ship | steamship | ssgreateastern | greateastern | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | isambardkingdombrunel | isambardbrunel | brunel | leviathan | cablelayingship | cablelaying

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

An engineer next to the cable laying machinery

Description

Reproduction ID: H2458 Maker: Unknown Date: 1865

Subjects

nationalmaritimemuseum | ship | steamship | ssgreateastern | greateastern | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | isambardkingdombrunel | isambardbrunel | brunel | leviathan | cablelayingship | cablelaying

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cable laying machinery on the 'Great Eastern'

Description

Reproduction ID: H2457 Maker: Unknown Date: 1865-1872

Subjects

nationalmaritimemuseum | ship | steamship | ssgreateastern | greateastern | easternsteamnavigationcompany | jscottrussellco | scottrussell | easterncompany | greatshipcompany | isambardkingdombrunel | isambardbrunel | brunel | leviathan | cablelayingship | cablelaying

License

No known copyright restrictions

Site sourced from

Royal Museums Greenwich | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.463 Building Technologies III: Building Structural Systems II (MIT) 4.463 Building Technologies III: Building Structural Systems II (MIT)

Description

This course addresses advanced topics in structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems; expanding to include more complex determinant, indeterminate, long-span and high-rise systems. Some of the topics covered include reinforced concrete, steel and engineered wood design, and an introduction to tensile systems. The contemporary exterior envelope is discussed with an emphasis on the classification of systems, their performance attributes and advanced manufacturing technologies. This course is the second of two graduate structures courses, the first of which is 4.462. They offer an expanded version of the content presented in the undergraduate course, 4.440. This course addresses advanced topics in structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems; expanding to include more complex determinant, indeterminate, long-span and high-rise systems. Some of the topics covered include reinforced concrete, steel and engineered wood design, and an introduction to tensile systems. The contemporary exterior envelope is discussed with an emphasis on the classification of systems, their performance attributes and advanced manufacturing technologies. This course is the second of two graduate structures courses, the first of which is 4.462. They offer an expanded version of the content presented in the undergraduate course, 4.440.

Subjects

structures | structures | building technology | building technology | construction | construction | static behavior of structures and strength of materials | static behavior of structures and strength of materials | reactions | reactions | truss analysis | truss analysis | stability of structures | stability of structures | stress and strain at a point | stress and strain at a point | shear and bending moment diagrams | shear and bending moment diagrams | stresses in beams | stresses in beams | Mohr's Circle | Mohr's Circle | column buckling | column buckling | deflection of beams | deflection of beams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking. Includes audio/video content: AV faculty introductions. 1.050 is a sophomore-level engineering mechanics course, commonly labelled "Statics and Strength of Materials" or "Solid Mechanics I." This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.

Subjects

solid mechanics | solid mechanics | engineering design | engineering design | open ended exercises | open ended exercises | matrix analysis of structures | matrix analysis of structures | structural mechanics | structural mechanics | static equilibrium | static equilibrium | force resultants | force resultants | support conditions | support conditions | determinate planar structures | determinate planar structures | beams | beams | trusses | trusses | frames | frames | stress | stress | strain | strain | shear | shear | bending | bending | torsion | torsion | matrix methods | matrix methods | elastic stability | elastic stability | design exercises | design exercises | interactive exercises | interactive exercises | systems thinking | systems thinking

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Happy 8th Birthday, Flickr Commons! 3 days to go (LOC) Happy 8th Birthday, Flickr Commons! 3 days to go (LOC)

Description

Subjects

oregon | oregon | bridges | bridges | rivers | rivers | libraryofcongress | libraryofcongress | willametteriver | willametteriver | coveredbridges | coveredbridges | lanecounty | lanecounty | nationalregisterofhistoricplaces | nationalregisterofhistoricplaces | carolmhighsmith | carolmhighsmith | westfiroregon | westfiroregon | officebridge | officebridge | westfircoveredbridge | westfircoveredbridge | aufderheidenationalscenicbyway | aufderheidenationalscenicbyway | westcascadesnationalscenicbyway | westcascadesnationalscenicbyway | northforkmiddleforkwillametteriver | northforkmiddleforkwillametteriver | howetrussbridges | howetrussbridges | happybirthdayflickrcommons | happybirthdayflickrcommons | westfirlumbercompany | westfirlumbercompany | thebridgesoflanecounty | thebridgesoflanecounty | thecoveredbridgesocietyoforegon | thecoveredbridgesocietyoforegon

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Harper's Ferry and Bridge, from Maryland Heights.

Description

Subjects

cities | hills | rivers | towns | pib | railroadbridges | trussbridges | bollmantrussrailroadbridge | wendellbollman

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

is likely on the Dublin/Drogheda line north of Amiens street, Dublin is likely on the Dublin/Drogheda line north of Amiens street, Dublin

Description

Subjects

bridge | bridge | dublin | dublin | tracks | tracks | cables | cables | points | points | castiron | castiron | ornate | ornate | signal | signal | chevron | chevron | railwaybridge | railwaybridge | electricwires | electricwires | railwaysignal | railwaysignal | royalcanal | royalcanal | unknownlocation | unknownlocation | 1845 | 1845 | nationallibraryofireland | nationallibraryofireland | gnri | gnri | latticetruss | latticetruss | greatnorthernrailwayireland | greatnorthernrailwayireland | amiensstreetstation | amiensstreetstation | locationidentified | locationidentified | sirjohnmacneill | sirjohnmacneill | ossoryroad | ossoryroad | joshuahhargravecollection | joshuahhargravecollection | dublinanddroghedarailway | dublinanddroghedarailway | joshuehhargrave | joshuehhargrave | amiensstreetnorth | amiensstreetnorth | northernrailwayofireland | northernrailwayofireland

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Wagon Bridg [sic] - Red River: After High Water May 26 '08 Wagon Bridg [sic] - Red River: After High Water May 26 '08

Description

Subjects

floods | floods | flooddamage | flooddamage | naturaldisasters | naturaldisasters | rppc | rppc | trussbridges | trussbridges

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.440 Basic Structural Theory (MIT) 4.440 Basic Structural Theory (MIT)

Description

This course introduces the static behavior of structures and strength of materials. Topics covered include: reactions, truss analysis, stability of structures, stress and strain at a point, shear and bending moment diagrams, stresses in beams, Mohr's Circle, column buckling, and deflection of beams. Laboratory sessions are included where students are asked to solve structural problems by building simple models and testing them. This course introduces the static behavior of structures and strength of materials. Topics covered include: reactions, truss analysis, stability of structures, stress and strain at a point, shear and bending moment diagrams, stresses in beams, Mohr's Circle, column buckling, and deflection of beams. Laboratory sessions are included where students are asked to solve structural problems by building simple models and testing them.

Subjects

structures | structures | building technology | building technology | construction | construction | static behavior of structures and strength of materials | static behavior of structures and strength of materials | reactions | reactions | truss analysis | truss analysis | stability of structures | stability of structures | stress and strain at a point | stress and strain at a point | shear and bending moment diagrams | shear and bending moment diagrams | stresses in beams | stresses in beams | Mohr's Circle | Mohr's Circle | column buckling | column buckling | deflection of beams | deflection of beams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.462 Building Technologies II: Building Structural Systems I (MIT) 4.462 Building Technologies II: Building Structural Systems I (MIT)

Description

This course serves as an introduction to the history, theory, and construction of basic structural systems with an introduction to energy issues in buildings. Emphasis is placed on developing an understanding of basic systematic and elemental behavior; principles of structural behavior and analysis of individual structural elements and strategies for load carrying. The subject introduces fundamental energy topics including thermodynamics, psychrometrics, and comfort, as they relate to building design and construction. This course is the first of two graduate structures courses, the second of which is 4.463. They offer an expanded version of the content presented in the undergraduate course, 4.440. This course serves as an introduction to the history, theory, and construction of basic structural systems with an introduction to energy issues in buildings. Emphasis is placed on developing an understanding of basic systematic and elemental behavior; principles of structural behavior and analysis of individual structural elements and strategies for load carrying. The subject introduces fundamental energy topics including thermodynamics, psychrometrics, and comfort, as they relate to building design and construction. This course is the first of two graduate structures courses, the second of which is 4.463. They offer an expanded version of the content presented in the undergraduate course, 4.440.

Subjects

column buckling | and deflection of beams | column buckling | and deflection of beams | Mohr's Circle | Mohr's Circle | stresses in beams | stresses in beams | shear and bending moment diagrams | shear and bending moment diagrams | stress and strain at a point | stress and strain at a point | stability of structures | stability of structures | truss analysis | truss analysis | reactions | reactions | static behavior of structures and strength of materials | static behavior of structures and strength of materials | construction | construction | building technology | building technology | structures | structures | column buckling and deflection of beams | column buckling and deflection of beams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Montage van de Losaribrug (2x60 Mr) 3e Afdeeling 1e Sectie Montage van de Losaribrug (2x60 Mr) 3e Afdeeling 1e Sectie

Description

Subjects

rivers | rivers | railroads | railroads | railroadbridges | railroadbridges | trussbridges | trussbridges | staterailway | staterailway | staatsspoorwegen | staatsspoorwegen

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata