Searching for tyrosine kinase inhibitors : 2 results found | RSS Feed for this search
Description
Human genome sequencing has revolutionized our understanding of disease susceptibility, drug metabolism and human ancestry. This course will explore how these advances have been made possible by revolutionary new sequencing methodologies that have decreased costs and increased throughput of genome analysis, making it possible to examine genetic correlates for a variety of biological processes and disorders. The course will combine discussions of primary scientific research papers with hands-on data analysis and small group presentations. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a Human genome sequencing has revolutionized our understanding of disease susceptibility, drug metabolism and human ancestry. This course will explore how these advances have been made possible by revolutionary new sequencing methodologies that have decreased costs and increased throughput of genome analysis, making it possible to examine genetic correlates for a variety of biological processes and disorders. The course will combine discussions of primary scientific research papers with hands-on data analysis and small group presentations. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in aSubjects
genome sequencing | genome sequencing | genome analysis | genome analysis | disease susceptibility | disease susceptibility | drug metabolism | drug metabolism | human ancestry | human ancestry | mitochondrial DNA | mitochondrial DNA | tyrosine kinase inhibitors | tyrosine kinase inhibitors | BCR-ABL gene fusion | BCR-ABL gene fusion | PCSK9 inhibitors | PCSK9 inhibitors | hypercholesterolemia | hypercholesterolemia | genetic testing | genetic testing | next generation sequencing | next generation sequencing | Single-nucleotide polymorphisms (SNPs) | Single-nucleotide polymorphisms (SNPs) | copy number variations (CNVs) | copy number variations (CNVs) | genome-wide association studies (GWAS) | genome-wide association studies (GWAS) | Chronic myelogenous leukemia (CML) | Chronic myelogenous leukemia (CML) | mosaics | mosaics | chimeras | chimeras | bioinformatics | bioinformaticsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.342 Personal Genomics and Medicine: What's in Your Genome? (MIT)
Description
Human genome sequencing has revolutionized our understanding of disease susceptibility, drug metabolism and human ancestry. This course will explore how these advances have been made possible by revolutionary new sequencing methodologies that have decreased costs and increased throughput of genome analysis, making it possible to examine genetic correlates for a variety of biological processes and disorders. The course will combine discussions of primary scientific research papers with hands-on data analysis and small group presentations. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in aSubjects
genome sequencing | genome analysis | disease susceptibility | drug metabolism | human ancestry | mitochondrial DNA | tyrosine kinase inhibitors | BCR-ABL gene fusion | PCSK9 inhibitors | hypercholesterolemia | genetic testing | next generation sequencing | Single-nucleotide polymorphisms (SNPs) | copy number variations (CNVs) | genome-wide association studies (GWAS) | Chronic myelogenous leukemia (CML) | mosaics | chimeras | bioinformaticsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata