Searching for unsteady : 11 results found | RSS Feed for this search

16.120 Compressible Flow (MIT) 16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear. The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | compressible fluid dynamics | fluid dynamics | fluid dynamics | external flows | external flows | internal flows | internal flows | quasi-on-dimensional | quasi-on-dimensional | quasi-1D | quasi-1D | channel flow | channel flow | multi-dimensional flows | multi-dimensional flows | nozzles | nozzles | diffusers | diffusers | inlets | inlets | loss generation | loss generation | interactions | interactions | aerodynamic shapes | aerodynamic shapes | subsonic | subsonic | supersonic | supersonic | transonic | transonic | hypersonic | hypersonic | shock waves | shock waves | vortices | vortices | disturbance behavior | disturbance behavior | unsteady | unsteady | speed of sound | speed of sound | isentropic flows | isentropic flows | non-isentropic flows | non-isentropic flows | potential flows | potential flows | rotational flows | rotational flows | shaft work | shaft work | heat addition | heat addition | mass addition | mass addition | flow states | flow states | flow regime | flow regime | velocity non-uniformities | velocity non-uniformities | density non-uniformities | density non-uniformities | fluid system components | fluid system components | lift | lift | drag | drag | continuum flow | continuum flow | shock strength | shock strength | characteristics | characteristics | governing equations | governing equations | thermodynamic context | thermodynamic context | characteristic parameters | characteristic parameters | quasi-one-dimensional flow | quasi-one-dimensional flow | disturbances | disturbances | unsteady flow | unsteady flow | gas dynamic discontinuities | gas dynamic discontinuities | detonations | detonations | linear two-dimensional flows | linear two-dimensional flows | non-linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.23 Hydrofoils and Propellers (13.04) (MIT) 2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT) 13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections | 2.23 | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.26 Compressible Fluid Dynamics (MIT) 2.26 Compressible Fluid Dynamics (MIT)

Description

2.26 is a 6-unit Honors-level subject serving as the Mechanical Engineering department's sole course in compressible fluid dynamics. The prerequisites for this course are undergraduate courses in thermodynamics, fluid dynamics, and heat transfer. The goal of this course is to lay out the fundamental concepts and results for the compressible flow of gases. Topics to be covered include: appropriate conservation laws; propagation of disturbances; isentropic flows; normal shock wave relations, oblique shock waves, weak and strong shocks, and shock wave structure; compressible flows in ducts with area changes, friction, or heat addition; heat transfer to high speed flows; unsteady compressible flows, Riemann invariants, and piston and shock tube problems; steady 2D supersonic flow, Prandtl-Mey 2.26 is a 6-unit Honors-level subject serving as the Mechanical Engineering department's sole course in compressible fluid dynamics. The prerequisites for this course are undergraduate courses in thermodynamics, fluid dynamics, and heat transfer. The goal of this course is to lay out the fundamental concepts and results for the compressible flow of gases. Topics to be covered include: appropriate conservation laws; propagation of disturbances; isentropic flows; normal shock wave relations, oblique shock waves, weak and strong shocks, and shock wave structure; compressible flows in ducts with area changes, friction, or heat addition; heat transfer to high speed flows; unsteady compressible flows, Riemann invariants, and piston and shock tube problems; steady 2D supersonic flow, Prandtl-Mey

Subjects

conservation laws | conservation laws | isentropic flows | isentropic flows | normal shock wave relations | normal shock wave relations | oblique shock waves | oblique shock waves | weak shock | weak shock | strong shock | strong shock | ducts | ducts | heat transfer | heat transfer | unsteady flows | unsteady flows | Riemann invariants | Riemann invariants | piston | piston | shock tube | shock tube | steady 2D supersonic flow | steady 2D supersonic flow | Prandtl-Meyer function | Prandtl-Meyer function | self-similar compressible flows | self-similar compressible flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Jimmy Forsyth 2007 Jimmy Forsyth 2007

Description

Subjects

man | man | male | male | face | face | vegetables | vegetables | hat | hat | sign | sign | cane | cane | shop | shop | retail | retail | wall | wall | shirt | shirt | price | price | fruit | fruit | standing | standing | pen | pen | handwriting | handwriting | mouth | mouth | hair | hair | newcastle | newcastle | nose | nose | back | back | photographer | photographer | hand | hand | basket | basket | arm | arm | skin | skin | box | box | mark | mark | character | character | board | board | coat | coat | chest | chest | leg | leg | markets | markets | stall | stall | vegetable | vegetable | ceiling | ceiling | moustache | moustache | shelf | shelf | number | number | container | container | elderly | elderly | signage | signage | ear | ear | button | button | trousers | trousers | tray | tray | jumper | jumper | drape | drape | lip | lip | unusual | unusual | sales | sales | shoulder | shoulder | crease | crease | wrinkle | wrinkle | consumerism | consumerism | attentive | attentive | eyelid | eyelid | selfprotrait | selfprotrait | 2007 | 2007 | fascinating | fascinating | digitalimage | digitalimage | christmascard | christmascard | cardboardbox | cardboardbox | unsteady | unsteady | socialhistory | socialhistory | graingermarket | graingermarket | colourphotograph | colourphotograph | jimmyforsyth | jimmyforsyth | graingermarket180 | graingermarket180

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | lifting and thickness problems | sub-cavitating sections | unsteady flow problems | computer-aided design | low drag | cavitation free sections | Lifting line and lifting surface theory | hydrofoil craft | rudder | and control surface design | propeller lifting line | lifting surface theory | wake adapted propellers | unsteady propeller thrust and torque | axially symmetric bodies | low-aspect ratio lifting surfaces | Hydrodynamic performance | design of waterjets | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | lifting and thickness problems | sub-cavitating sections | unsteady flow problems | computer-aided design | low drag | cavitation free sections | Lifting line and lifting surface theory | hydrofoil craft | rudder | and control surface design | propeller lifting line | lifting surface theory | wake adapted propellers | unsteady propeller thrust and torque | axially symmetric bodies | low-aspect ratio lifting surfaces | Hydrodynamic performance | design of waterjets | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.26 Compressible Fluid Dynamics (MIT)

Description

2.26 is a 6-unit Honors-level subject serving as the Mechanical Engineering department's sole course in compressible fluid dynamics. The prerequisites for this course are undergraduate courses in thermodynamics, fluid dynamics, and heat transfer. The goal of this course is to lay out the fundamental concepts and results for the compressible flow of gases. Topics to be covered include: appropriate conservation laws; propagation of disturbances; isentropic flows; normal shock wave relations, oblique shock waves, weak and strong shocks, and shock wave structure; compressible flows in ducts with area changes, friction, or heat addition; heat transfer to high speed flows; unsteady compressible flows, Riemann invariants, and piston and shock tube problems; steady 2D supersonic flow, Prandtl-Mey

Subjects

conservation laws | isentropic flows | normal shock wave relations | oblique shock waves | weak shock | strong shock | ducts | heat transfer | unsteady flows | Riemann invariants | piston | shock tube | steady 2D supersonic flow | Prandtl-Meyer function | self-similar compressible flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Jimmy Forsyth 2007

Description

Jimmy Forsyth, the photographer himself in the Grainger Market. Jimmy used this image for his personal Christmas card in 2007.

Subjects

markets | jimmyforsyth | photographer | colourphotograph | digitalimage | socialhistory | man | elderly | male | selfprotrait | graingermarket | newcastle | 2007 | graingermarket180 | fruit | vegetables | vegetable | basket | tray | container | price | board | number | handwriting | pen | cane | trousers | crease | coat | jumper | shirt | hat | moustache | hair | shelf | wall | ceiling | button | mark | character | standing | unusual | christmascard | drape | eyelid | attentive | ear | wrinkle | face | box | cardboardbox | signage | sign | retail | fascinating | shop | stall | sales | consumerism | nose | mouth | lip | skin | shoulder | back | chest | arm | leg | hand | unsteady

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata