Searching for wastewater : 15 results found | RSS Feed for this search

1

1.85 Water and Wastewater Treatment Engineering (MIT) 1.85 Water and Wastewater Treatment Engineering (MIT)

Description

This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files. This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

Subjects

water pollution | water pollution | wastewater treatment | wastewater treatment | chemical treatment | chemical treatment | gas transfer | gas transfer | reactor tanks | reactor tanks | water quality | water quality | trickling filters | trickling filters | sludge handling | sludge handling | wastewater screening | wastewater screening

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.85 Water and Wastewater Treatment Engineering (MIT) 1.85 Water and Wastewater Treatment Engineering (MIT)

Description

This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment. This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment.

Subjects

water pollution | water pollution | wastewater treatment | wastewater treatment | chemical treatment | chemical treatment | gas transfer | gas transfer | reactor tanks | reactor tanks | water quality | water quality | trickling filters | trickling filters | sludge handling | sludge handling | wastewater screening | wastewater screening

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.191 Introduction to Integrated Design (MIT) 4.191 Introduction to Integrated Design (MIT)

Description

During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique. During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.

Subjects

Sustainability | Sustainability | engineering | engineering | built environment | built environment | life-cycle assessment | life-cycle assessment | LCA | LCA | product impact | product impact | product life cycle | product life cycle | infrastructure | infrastructure | computational methods | computational methods | water | water | wastewater | wastewater | energy | energy | materials | materials | construction | construction | introductory design | introductory design | studio | studio | drawing | drawing | modeling | modeling | 3D models | 3D models | architecture | architecture | architectural design | architectural design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.964 Design for Sustainability (MIT) 1.964 Design for Sustainability (MIT)

Description

This course on sustainability will cover the implications of this topic on engineering, design, and architecture. The course will begin with a general survey and discussion of current trends, followed by the introduction of the life cycle assessment (LCA) method as a rigorous, quantitative alternative to current popular sustainability measures for the built environment. This course on sustainability will cover the implications of this topic on engineering, design, and architecture. The course will begin with a general survey and discussion of current trends, followed by the introduction of the life cycle assessment (LCA) method as a rigorous, quantitative alternative to current popular sustainability measures for the built environment.

Subjects

sustainability | sustainability | engineering | engineering | built environment | built environment | life-cycle assessment | life-cycle assessment | LCA | LCA | product impact | product impact | product life cycle | product life cycle | infrastructure | infrastructure | computational methods | computational methods | water | water | wastewater | wastewater | energy | energy | materials | materials | construction | construction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.964 Design for Sustainability (MIT) 1.964 Design for Sustainability (MIT)

Description

The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction. The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.

Subjects

Sustainability | Sustainability | engineering | engineering | built environment | built environment | life-cycle assessment | life-cycle assessment | LCA | LCA | product impact | product impact | product life cycle | product life cycle | infrastructure | infrastructure | computational methods | computational methods | water | water | wastewater | wastewater | energy | energy | materials | materials | construction | construction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.85 Water and Wastewater Treatment Engineering (MIT)

Description

This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment.

Subjects

water pollution | wastewater treatment | chemical treatment | gas transfer | reactor tanks | water quality | trickling filters | sludge handling | wastewater screening

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.500 Desalination and Water Purification (MIT) 2.500 Desalination and Water Purification (MIT)

Description

Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus

Subjects

reverse osmosis | reverse osmosis | seawater | seawater | electrodialysis | electrodialysis | student work | student work | distillation | distillation | flash evaporation | flash evaporation | power generation | power generation | wastewater treatment | wastewater treatment | particulate removal | particulate removal | system engineering | system engineering | cogeneration | cogeneration | solar still | solar still | chlorination | chlorination | Haiti | Haiti

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.85 Water and Wastewater Treatment Engineering (MIT)

Description

This course is an overview of engineering approaches to protecting water quality with an emphasis on fundamental principals. Theory and conceptual design of systems for treating municipal wastewater and drinking water are discussed, as well as reactor theory, process kinetics, and models. Physical, chemical, and biological processes are presented, including sedimentation, filtration, biological treatment, disinfection, and sludge processing. Finally, there is discussion of engineered and natural processes for wastewater treatment.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

Subjects

water pollution | wastewater treatment | chemical treatment | gas transfer | reactor tanks | water quality | trickling filters | sludge handling | wastewater screening

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to Water Treatment

Description

This course will detail urban water services, focusing on basic drinking water and wastewater treatment technologies. Unit processes involved in the two treatment chains will be described as well as the physical, chemical and biological processes involved. There will be an emphasis on water quality and the functionality of each unit process within the treatment chain. After the course one should be able to recognise the process units, describe their function and make simple design calculations on water treatment plants (drinking and waste water). Overall the course will teach the role of treatment technologies in providing adequate water supply and effective sanitation which are essential for human society and the safeguarding of public and environmental health. There is a global tren

Subjects

Water water treatment urban water services drinking water wastewater water quality

License

by-nc-sa http://creativecommons.org/licenses/by-nc-sa/3.0/ by-nc-sa http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.tudelft.nl/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.500 Desalination and Water Purification (MIT)

Description

Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus

Subjects

reverse osmosis | seawater | electrodialysis | student work | distillation | flash evaporation | power generation | wastewater treatment | particulate removal | system engineering | cogeneration | solar still | chlorination | Haiti

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Urban Drainage and Watermanagement

Description

The lectures will discuss characteristics of urban water flows, hydraulics, hydrology and how to apply knowledge of these phenomena to the design and analysis of urban water systems. Integration of various scientific disciplines and technological and practical approaches is a central theme in this course. Students will design an urban drainage system for a case of new development or a redevelopment area in the Netherlands or abroad. They will prepare a written report of their data, design choices and results and present main results in a plenary session that concludes the lecture series. After successful finishing of this course, the student should be able to design and analyse an urban drainage system for the collection and transport of wastewater and stormwater, based on hydrological inf

Subjects

urban water flows hydraulics hydrology design urban water systems wastewater stormwater

License

by-nc-sa http://creativecommons.org/licenses/by-nc-sa/3.0/ by-nc-sa http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.tudelft.nl/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.191 Introduction to Integrated Design (MIT)

Description

During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.

Subjects

Sustainability | engineering | built environment | life-cycle assessment | LCA | product impact | product life cycle | infrastructure | computational methods | water | wastewater | energy | materials | construction | introductory design | studio | drawing | modeling | 3D models | architecture | architectural design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses-4.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.964 Design for Sustainability (MIT)

Description

The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.

Subjects

Sustainability | engineering | built environment | life-cycle assessment | LCA | product impact | product life cycle | infrastructure | computational methods | water | wastewater | energy | materials | construction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.964 Design for Sustainability (MIT)

Description

The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.

Subjects

Sustainability | engineering | built environment | life-cycle assessment | LCA | product impact | product life cycle | infrastructure | computational methods | water | wastewater | energy | materials | construction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.964 Design for Sustainability (MIT)

Description

This course on sustainability will cover the implications of this topic on engineering, design, and architecture. The course will begin with a general survey and discussion of current trends, followed by the introduction of the life cycle assessment (LCA) method as a rigorous, quantitative alternative to current popular sustainability measures for the built environment.

Subjects

sustainability | engineering | built environment | life-cycle assessment | LCA | product impact | product life cycle | infrastructure | computational methods | water | wastewater | energy | materials | construction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata