Searching for wings : 367 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.500 Introduction to Design Computing (MIT) 4.500 Introduction to Design Computing (MIT)

Description

This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use of computer rendering and design construction and fabrication. Students design a small building using computer models leading to a full package of physical and virtual materials, from computer generated drawings to rapid, prototyped models. This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use of computer rendering and design construction and fabrication. Students design a small building using computer models leading to a full package of physical and virtual materials, from computer generated drawings to rapid, prototyped models.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.510 Digital Design Fabrication (MIT) 4.510 Digital Design Fabrication (MIT)

Description

This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, and CAD/CAM tools as output material. It presents the process of design and construction using CAD files introduced by the office of Gehry Partners during the construction of the Guggenheim Museum in Bilbao, Spain. It is taught in phases starting with rapid prototyping and ending with digital mockups of building components fabricated from CAD files on a one-to-one scale. This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, and CAD/CAM tools as output material. It presents the process of design and construction using CAD files introduced by the office of Gehry Partners during the construction of the Guggenheim Museum in Bilbao, Spain. It is taught in phases starting with rapid prototyping and ending with digital mockups of building components fabricated from CAD files on a one-to-one scale.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD/CAM fabrication | CAD/CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation | CAD CAM fabrication | CAD CAM fabrication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.206 Introduction to Design Computing (MIT) 4.206 Introduction to Design Computing (MIT)

Description

This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations within a computational environment. Each semester will explore a particular historical period in architecture and the work of a selected architect. This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations within a computational environment. Each semester will explore a particular historical period in architecture and the work of a selected architect.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation | representational mediums | representational mediums | architectural design | architectural design | complex phenomena | complex phenomena | constructs | constructs | information visualization | information visualization | programming | programming | computer graphics | computer graphics | data respresentation | data respresentation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.212 Design Fabrication (MIT) 4.212 Design Fabrication (MIT)

Description

Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit and generative and the physical representation of information using rapid prototyping devices. Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit and generative and the physical representation of information using rapid prototyping devices.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Studies for Buildings at Stewart and South Avenue (Cornell University)

Description

Collection: A. D. White Architectural Photographs, Cornell University Library Accession Number: 15/5/3090.00484 Title: Studies for Buildings at Stewart and South Avenue (Cornell University) Architect: Shreve, Lamb & Harmon (1929-) Photograph date: ca. 1935 Materials: gelatin silver print Image: 5 3/8 x 8 3/4 in.; 13.6525 x 22.225 cm Provenance: Transfer from the College of Architecture, Art and Planning Persistent URI: hdl.handle.net/1813.001/5skn There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source. We had some help with the geocoding from Web Services by Yahoo!

Subjects

cornelluniversitylibrary | drawings | architectureplans | universitycampuses | cornelluniversityithacanewyork | architecturaldrawings | universities | culidentifier:value=155309000484 | culidentifier:lunafield=accessionnumber

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Studies for Buildings at Stewart and South Avenue (Cornell University)

Description

Collection: A. D. White Architectural Photographs, Cornell University Library Accession Number: 15/5/3090.00485 Title: Studies for Buildings at Stewart and South Avenue (Cornell University) Architect: Shreve, Lamb & Harmon (1929-) Photograph date: ca. 1935-ca. 1950 Drawing date: 1935 Materials: gelatin silver print Image: 5 x 9 1/4 in.; 12.7 x 23.495 cm Provenance: Transfer from the College of Architecture, Art and Planning Persistent URI: hdl.handle.net/1813.001/5skp There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source. We had some help with the geocoding from Web Services by Yahoo!

Subjects

cornelluniversitylibrary | drawings | universitycampuses | architectureplans | architecturaldrawings | cornelluniversityithacanewyork | universities | culidentifier:value=155309000485 | culidentifier:lunafield=accessionnumber

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Dunne, Biplane Dunne, Biplane

Description

Subjects

uk | uk | england | england | woman | woman | man | man | paris | paris | kent | kent | wings | wings | unitedkingdom | unitedkingdom | philosophy | philosophy | aeroplane | aeroplane | getty | getty | d8 | d8 | riverthames | riverthames | d3 | d3 | graces | graces | d5 | d5 | biplane | biplane | d1 | d1 | eastchurch | eastchurch | notail | notail | d4 | d4 | thechannel | thechannel | gutenberg | gutenberg | churchroad | churchroad | flyingmachine | flyingmachine | thomasmayne | thomasmayne | serialism | serialism | lanternslides | lanternslides | nationallibraryofireland | nationallibraryofireland | dryflyfishing | dryflyfishing | july1910 | july1910 | swaleborough | swaleborough | locationidentified | locationidentified | johnwilliamdunne | johnwilliamdunne | flightmagazine | flightmagazine | dateestablished | dateestablished | thewarintheair | thewarintheair | standfordhill | standfordhill | arcopublishing | arcopublishing | thomasholmesmason | thomasholmesmason | thomashmasonsonslimited | thomashmasonsonslimited | dunnebiplanesstickandstring | dunnebiplanesstickandstring | lieutenantdunne | lieutenantdunne | darlingdownsgazette | darlingdownsgazette | mrhgwells | mrhgwells | april9th1910 | april9th1910 | no5ateastchurch | no5ateastchurch | jane’salltheworld’saircraft1913 | jane’salltheworld’saircraft1913 | fredtjane | fredtjane | villacoublayairfield | villacoublayairfield | earlymilitaryaircraft | earlymilitaryaircraft | taillesssweptwingdesigns | taillesssweptwingdesigns | certifiedinherentlystableaircraft | certifiedinherentlystableaircraft | flyingwingdesign | flyingwingdesign | lateralstability | lateralstability

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

View of Chipola River from porch View of Chipola River from porch

Description

Subjects

trees | trees | florida | florida | rivers | rivers | porches | porches | porchswings | porchswings | chipolariver | chipolariver

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Negative Collection Image Atlas Negative Collection Image

Description

Subjects

airplane | airplane | aircraft | aircraft | aviation | aviation | gd | gd | militaryaviation | militaryaviation | f111 | f111 | navalaviation | navalaviation | prattwhitney | prattwhitney | generaldynamics | generaldynamics | prattandwhitney | prattandwhitney | swingwing | swingwing | generaldynamicsf111 | generaldynamicsf111 | variablesweepwing | variablesweepwing | tf30 | tf30 | generaldynamicsf111aardvark | generaldynamicsf111aardvark | f111b | f111b | swingwings | swingwings | variablegeometrywing | variablegeometrywing | prattwhitneytf30 | prattwhitneytf30 | generaldynamicsf111b | generaldynamicsf111b | pwtf30 | pwtf30

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Children playing on swing at a FERA nursery - Green Cove Springs Children playing on swing at a FERA nursery - Green Cove Springs

Description

Subjects

florida | florida | swings | swings | 1935 | 1935 | playgrounds | playgrounds | greencovesprings | greencovesprings | greencovespringsflorida | greencovespringsflorida | federalemergencyreliefadministrationfera | federalemergencyreliefadministrationfera | greencovespringsnurseryschool | greencovespringsnurseryschool

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Illustrated front cover from The Queenslander July 25 1935 Illustrated front cover from The Queenslander July 25 1935

Description

Subjects

illustration | illustration | cityhall | cityhall | drawings | drawings | brisbane | brisbane | queensland | queensland | queenslander | queenslander | statelibraryofqueensland | statelibraryofqueensland | slq | slq

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=32605636@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings | 16.01 | 16.02 | 16.03 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Marion Meffert on horse - Ocala Marion Meffert on horse - Ocala

Description

Subjects

florida | florida | ocala | ocala | marionmeffert | marionmeffert | girls | girls | horses | horses | portraits | portraits | porches | porches | porchswings | porchswings

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Envelope decorated by Herbert A. Franke and addressed to Koreshan Unity President Hedwig Michel, Estero, Florida

Description

Subjects

art | illustration | mail | florida | drawings | estero | postage | envelopes | alligators | leecounty | koreshans | emilydickinson | decoratedenvelopes | statelibraryandarchivesofflorida | hedwigmichel | koreshanunitycollection | vision:outdoor=0696 | vision:sky=0664 | vision:sunset=055 | herbertafranke

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Higgenbottom family pool - Jacksonville

Description

Subjects

swimming | children | florida | families | mothers | jacksonville | fathers | lawns | swimmingpools | swingsets

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Wing chord extension on D-558-2

Description

Subjects

airplane | wings | nasa | 1953 | aeronautics | naca | nasadrydenflightresearchcenter

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

South Shields Museum and Art Gallery during the First World War

Description

Subjects

life | road | blackandwhite | sun | moon | tree | writing | bag | landscape | belt | uniform | shine | boots | artgallery | buttons | smoke | coat | text | debris | hill | pipe | illustrations | drawings | humour | luggage | moustache | spirits | sniper | strap | worldwarone | trousers | laughter | bullet | unusual | ww1 | pocket | bomb | popular | figures | wreckage | slope | rubble | publiclibrary | uplifting | depictions | 191718 | warfront | brucebairnsfather | socialheritage | southshieldsmuseum | worlife1914 | twamvenues | liftspirits

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

South Shields Museum and Art Gallery during the First World War

Description

At the time of the First World War South Shields Museum and Art Gallery was used primarily as a Public Library with a museum and art gallery upstairs. There were a lot of changes at the Library during the war. The demand for books relating to the War and the various countries affected by the War was very high and a special bookcase was created to hold such items. The use of the newsroom, where the daily newspapers were kept, increased and the reference department had a supply of ?war maps? which showed activity in France and Belgium. All four of the male assistant staff members joined the army and were replaced by three female assistants; however the Chief Librarian got an exemption from the army. All but one of the male staff members returned from the war. Mr R.M.Daniel, who had worked at the library for 14 years and was called up on the first day of the war, was declared missing and then presumed dead in March 1918. There was an exhibition of drawings by Bruce Bairnsfather in 1917-18 which was very popular, the drawings were humorous depictions of life at the front. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email claire.ross@twmuseums.org.uk

Subjects

worldwarone | worlife1914 | twamvenues | drawings | ww1 | southshieldsmuseum | artgallery | humour | uplifting | spirits | publiclibrary | brucebairnsfather | 191718 | depictions | life | warfront | laughter | liftspirits | socialheritage | unusual | blackandwhite | writing | text | illustrations | tree | figures | slope | hill | bullet | bomb | sun | landscape | debris | pipe | smoke | uniform | belt | bag | luggage | boots | trousers | coat | buttons | pocket | moustache | moon | sniper | road | popular | shine | strap | wreckage | rubble

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The entrance hall of the Laing Art Gallery, about 1916

Description

During the difficult times of the First World War, art shows continued at the Laing Art Gallery and provided a welcome respite for many people. As the war went on, the Government toured several exhibitions around the country to inform and involve people in the war effort. In March 1917, the Gallery showed an exhibition of Canadian Official War Photographs. Soldiers and sailors were admitted at half price, hospital patients got in free, and all profits went to the Canadian War Memorials Fund. This was followed by an exhibition of drawings by Muirhead Bone, sketched on the battlefields of the Western Front. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email claire.ross@twmuseums.org.uk

Subjects

worldwarone | worlife1914 | twamvenues | tyneweararchivesmuseumsduringworldwarone | laingartgallery | 1916 | shieldfield | newcastleupontyne | interior | entrancehall | sculpture | painting | stand | furniture | glass | display | door | floor | shadow | fascinating | majestic | unusual | artshow | blackandwhitephotograph | socialhistory | march1917 | canadianofficialwarphotographs | digitalimage | england | unitedkingdom | canadianwarmemorialsfund | drawingsbymuirheadbone | battlefieldsketches | westernfront | frame | wall | ceiling | light | exhibitions | tribalobjects | hospitalpatients | soldiers | sailors | respite | wartime | welcomeddistraction | refuge | grand | classical | chain | picture | hook | industry

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Washington on Blue Peter

Description

This is a photograph of a Birthday Card Competition held by Blue Peter of the BBC in celebration of the 250th Anniversary of the Birth of George Washington in 1982. Reference: 5417/187/1 This collection of images has been assembled in support of the Washington Heritage Festival 2013. The celebration of Washington brings together a variety of different themes. Washington is a Town in the City of Sunderland, Tyne & Wear. It is traditionally associated with Coal Industry, and notably known as the home of the Washington Family, ancestors of the First President of the United States George Washington. However, in 1964 Washington was designated a New Town and drastically changed. With the introduction of new industry such as the Nissan Car Factory Washington experienced a huge redevelopment in both its economy and community. These Photographs are taken from the Records of the Washington Development Corporation; held at Tyne & Wear Archives. The records document this change in industry, landscape and community in Washington between 1964 & 1988, and consist of many photographs. For more information on the Washington Heritage Festival, 21st September 2013 please click here. (Copyright) These images are Crown Copyright. We're happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

northeast | iconic | memorable | event | nostalgic | development | community | bluepeter | birthdaycardcompetition | georgewashington | bluepeterdog | blackandwhitephotogarph | socialhistory | industrialheritage | abstract | digitalimage | coalindustry | traditional | newindustry | nissancarfactory | industry | washingtondevelopmentcorporation | 1964 | washington | newtown | washingtonfamily | firstpresident | unitedstatesofamerica | presidentgeorgewashington | ancestor | tynewear | cityofsunderland | town | northeastofengland | unitedkingdom | fascinating | interesting | unusual | washingtonheritagefestival2013 | washingtonheritagecollectionvisitsandevents | bbc | television | 250thanniversaryofthebirthofgeorgewashington | 1982 | paper | dog | room | drawings | shelf | toys | wall | furniture | handwriting | number | floor | artificiallight | shadow | men | woman | seated | presenters

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Four Lane Ends Metro Interchange

Description

This is an artist?s impression of the Four Lane Ends Metro Interchange. It was taken from the ?Ainsworth Spark Photo File.? Compiled between the 8th of December 1975 to the 12th of May 1977 it consists of artist's impressions, tender drawings, photographs of 3 dimensional models and plans relating to various Metro projects. Ainsworth Spark were Newcastle based Architects. The file is taken from the Mott, Hay and Anderson collection, consulting civil engineers responsible from the Tyneside Metro light rail system and the Tyne Pedestrian, cyclist and vehicular tunnels. Reference no. DT.MHA/7/D3987 This image inspired ?Interchange?, an experimental film and album of music by Warm Digits. More information can be found here www.twmuseums.org.uk/halfmemory/warm-digits- interchange (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

halfmemory | interchange | warmdigits | transport | newcastle | future | futuristic | architecture | nostalgic | retro | construction | publicfunding | modernist | futurist | bus | train | electrictram | urban | city | northeast | development | structure | advertising | civilengineering | artanddesign | blackandwhitephotograph | digitalimage | archives | tynewearmetro | publictransport | transportation | service | fourlaneendsmetrointerchange | artist?simpression | ainsworthsparkphotofile | 8thofdecember197512thofmay1977 | tenderdrawings | photographic | 3dimensionmodels | plans | metroprojects | ainsworthspark | newcastleupontyne | northeastofengland | unitedkingdom | architects | file | motthayandandersoncollection | consultingcivilengineers | tynesidemetrolightrailsystem | tynepedestriancyclistandvehiculartunnels | progression | progress | industry | abstract | industrialheritage | compelling | impressive | unusual | interesting | fascinating | stairs | people | entry | vehicles | rail | building | drawing | description | visual | grain | mark

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata