Searching for witches : 35 results found | RSS Feed for this search

1

7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT) 7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT)

Description

Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of

Subjects

biological computing | biological computing | Leonard Adleman | Leonard Adleman | exquisite detection | exquisite detection | whole-cell computing | whole-cell computing | computation | computation | molecular biology | molecular biology | biotin-avidin | biotin-avidin | magnetic beads | magnetic beads | cellular processes | cellular processes | combinatorial problems | combinatorial problems | self-assembly | self-assembly | nanodevices | nanodevices | molecular machines | molecular machines | quorum sensing | quorum sensing | molecular switches | molecular switches | ciliates | ciliates | molecular gates | molecular gates | molecular circuits | molecular circuits | genetic switch | genetic switch | cellular networks | cellular networks | genetic networks | genetic networks | genetic circuits | genetic circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

Includes audio/video content: AV lectures. This course provides an introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communication, and evolutionary systems biology. Includes audio/video content: AV lectures. This course provides an introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communication, and evolutionary systems biology.

Subjects

molecular systems biology | molecular systems biology | genetic networks | genetic networks | control theory | control theory | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation | local activation | global inhibition models | global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | general pattern formation models | general pattern formation models | cell-cell communication | cell-cell communication | quorum sensing | quorum sensing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co

Subjects

molecular systems biology | molecular systems biology | constructing and modeling of genetic networks | constructing and modeling of genetic networks | control theory and genetic networks | control theory and genetic networks | ambda phage as a genetic switch | ambda phage as a genetic switch | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation and global inhibition models | local activation and global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | developmental systems biology | developmental systems biology | general pattern formation models | general pattern formation models | modeling cell-cell communication | modeling cell-cell communication | quorum sensing | quorum sensing | models for Drosophilia development | models for Drosophilia development | 8.591 | 8.591 | 7.81 | 7.81

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req 6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming | computer engineering | computer engineering | kernal mode | kernal mode | user mode | user mode | concurrent activities | concurrent activities | interfaces | interfaces | software/hardware interface | software/hardware interface | boot loaders | boot loaders | memory management | memory management | processes switching | processes switching | fork | fork | IPC | IPC | file systems | file systems | shells | shells | Exec | Exec

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S06 Practical Electronics (MIT) EC.S06 Practical Electronics (MIT)

Description

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project. You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subjects

Electronics | Electronics | circuit | circuit | analog circuits | analog circuits | testing circuits | testing circuits | bridge circuits | bridge circuits | passive components | passive components | resistors | resistors | diodes | diodes | capacitors | capacitors | filters | filters | flip-flops | flip-flops | relays | relays | transistors | transistors | switches | switches | rectifiers | rectifiers | function generators | function generators | comparators | comparators | operational amplifiers | operational amplifiers | op-amps | op-amps | timing circuits | timing circuits | sensors | sensors | actuators | actuators | electronics | electronics | SP.764 | SP.764 | SP.765 | SP.765

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.013J The Supernatural in Music, Literature and Culture (MIT) 21M.013J The Supernatural in Music, Literature and Culture (MIT)

Description

This class explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. Provides a better understanding of the place of ambiguity and the role of interpretation in culture, science and art. Explores great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten. Readings will also include selections from the most recent scholarship on magic and the supernatural. Writing assignments will range from web-based projects to analytic essays. No previous experience in music is necessary. Projected guest lectures, musical performances, field trips. This class explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. Provides a better understanding of the place of ambiguity and the role of interpretation in culture, science and art. Explores great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten. Readings will also include selections from the most recent scholarship on magic and the supernatural. Writing assignments will range from web-based projects to analytic essays. No previous experience in music is necessary. Projected guest lectures, musical performances, field trips.

Subjects

magic | magic | witches | witches | witchcraft | witchcraft | belief | belief | superstition | superstition | sorcery | sorcery | ghost | ghost | spirit | spirit | heaven | heaven | hell | hell | devil | devil | angel | angel | occult | occult | paranormal | paranormal | religion | religion | allegory | allegory | Bible | Bible | God | God | sin | sin | alchemy | alchemy | astrology | astrology | mystic | mystic | mysticism | mysticism | Europe | Europe | European history | European history | medieval | medieval | Renaissance | Renaissance | Shakespeare | Shakespeare | Goethe | Goethe | Henry James | Henry James | 19th century America | 19th century America | metaphysics | metaphysics | pragmatism | pragmatism | death | death | afterlife | afterlife | soul | soul | phantom | phantom | myth | myth | spell | spell | wizard | wizard | wisdom | wisdom

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

This course studies fundamental design and implementation ideas in the engineering of operating systems. Lectures are based on a study of UNIX and research papers. Topics include virtual memory, threads, context switches, kernels, interrupts, system calls, interprocess communication, coordination, and the interaction between software and hardware. Individual laboratory assignments involve implementation of a small operating system in C, with some x86 assembly. This course studies fundamental design and implementation ideas in the engineering of operating systems. Lectures are based on a study of UNIX and research papers. Topics include virtual memory, threads, context switches, kernels, interrupts, system calls, interprocess communication, coordination, and the interaction between software and hardware. Individual laboratory assignments involve implementation of a small operating system in C, with some x86 assembly.

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.013J The Supernatural in Music, Literature and Culture (MIT) 21M.013J The Supernatural in Music, Literature and Culture (MIT)

Description

This course explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. It provides an understanding of the place of ambiguity and the role of interpretation in culture, science and art. Great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten are explored, as well as readings from the most recent scholarship on magic and the supernatural. This course explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. It provides an understanding of the place of ambiguity and the role of interpretation in culture, science and art. Great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten are explored, as well as readings from the most recent scholarship on magic and the supernatural.

Subjects

21M.013 | 21M.013 | 21A.113 | 21A.113 | 21L.013 | 21L.013 | Macbeth | Macbeth | Dido and Aeneas | Dido and Aeneas | Faust | Faust | Liszt | Liszt | Berlioz | Berlioz | Murnau | Murnau | Turn of the Screw | Turn of the Screw | magic | magic | witches | witches | witchcraft | witchcraft | belief | belief | superstition | superstition | sorcery | sorcery | ghost | ghost | spirit | spirit | heaven | heaven | hell | hell | devil | devil | angel | angel | occult | occult | paranormal | paranormal | religion | religion | allegory | allegory | Bible | Bible | God | God | sin | sin | alchemy | alchemy | astrology | astrology | mystic | mystic | mysticism | mysticism | Europe | Europe | European history | European history | medieval | medieval | Renaissance | Renaissance | Shakespeare | Shakespeare | Goethe | Goethe | Henry James | Henry James | 19th century America | 19th century America | metaphysics | metaphysics | pragmatism | pragmatism | death | death | afterlife | afterlife | soul | soul | phantom | phantom | myth | myth | spell | spell | wizard | wizard | wisdom | wisdom

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Texas and New Orleans, Southern Pacific, Railroad Junction, Paisano, Texas] [Texas and New Orleans, Southern Pacific, Railroad Junction, Paisano, Texas]

Description

Subjects

trains | trains | sp | sp | tno | tno | railroads | railroads | espee | espee | railroadcrossings | railroadcrossings | railroadswitches | railroadswitches

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S06 Practical Electronics (MIT)

Description

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subjects

Electronics | circuit | analog circuits | testing circuits | bridge circuits | passive components | resistors | diodes | capacitors | filters | flip-flops | relays | transistors | switches | rectifiers | function generators | comparators | operational amplifiers | op-amps | timing circuits | sensors | actuators | electronics | SP.764 | SP.765

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Resistive elements and networks | independent and dependent sources | switches and MOS devices | digital abstraction | amplifiers | and energy storage elements | Dynamics of first- and second-order networks | design in the time and frequency domains | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.764 Practical Electronics (MIT)

Description

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subjects

Electronics | circuit | analog circuits | testing circuits | bridge circuits | passive components | resistors | diodes | capacitors | filters | flip-flops | relays | transistors | switches | rectifiers | function generators | comparators | operational amplifiers | op-amps | timing circuits | sensors | actuators | electronics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT)

Description

This course studies fundamental design and implementation ideas in the engineering of operating systems. Lectures are based on a study of UNIX and research papers. Topics include virtual memory, threads, context switches, kernels, interrupts, system calls, interprocess communication, coordination, and the interaction between software and hardware. Individual laboratory assignments involve implementation of a small operating system in C, with some x86 assembly.

Subjects

operating system | OS | UNIX | virtual memory | threads | context switches | kernels | interrupts | system calls | interprocess communication | C | x86 assembly | programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pacific Railway Company]

Description

Subjects

men | tp | railroads | railroadtracks | railroadsignals | railroademployees | texaspacificrailway | railroadyards | texasandpacific | railroadmaintenance | railroadswitches

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Resistive elements and networks | independent and dependent sources | switches and MOS devices | digital abstraction | amplifiers | and energy storage elements | Dynamics of first- and second-order networks | design in the time and frequency domains | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Resistive elements and networks | independent and dependent sources | switches and MOS devices | digital abstraction | amplifiers | and energy storage elements | Dynamics of first- and second-order networks | design in the time and frequency domains | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collabora

Subjects

Fundamentals of the lumped circuit abstraction | Resistive elements and networks | independent and dependent sources | switches and MOS devices | digital abstraction | amplifiers | and energy storage elements | Dynamics of first- and second-order networks | design in the time and frequency domains | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Grafton - Junction with Parkersburg Branch.

Description

Subjects

trains | locomotives | trainstations | railroadcars | pib | tenders | depots | railroadyards | railroadfacilities | railroadswitches

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.013J The Supernatural in Music, Literature and Culture (MIT)

Description

This class explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. Provides a better understanding of the place of ambiguity and the role of interpretation in culture, science and art. Explores great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten. Readings will also include selections from the most recent scholarship on magic and the supernatural. Writing assignments will range from web-based projects to analytic essays. No previous experience in music is necessary. Projected guest lectures, musical performances, field trips.

Subjects

magic | witches | witchcraft | belief | superstition | sorcery | ghost | spirit | heaven | hell | devil | angel | occult | paranormal | religion | allegory | Bible | God | sin | alchemy | astrology | mystic | mysticism | Europe | European history | medieval | Renaissance | Shakespeare | Goethe | Henry James | 19th century America | metaphysics | pragmatism | death | afterlife | soul | phantom | myth | spell | wizard | wisdom

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.013J The Supernatural in Music, Literature and Culture (MIT)

Description

This course explores the relationship between music and the supernatural, focusing on the social history and context of supernatural beliefs as reflected in key literary and musical works from 1600 to the present. It provides an understanding of the place of ambiguity and the role of interpretation in culture, science and art. Great works of art by Shakespeare, Verdi, Goethe (in translation), Gounod, Henry James and Benjamin Britten are explored, as well as readings from the most recent scholarship on magic and the supernatural.

Subjects

21M.013 | 21A.113 | 21L.013 | Macbeth | Dido and Aeneas | Faust | Liszt | Berlioz | Murnau | Turn of the Screw | magic | witches | witchcraft | belief | superstition | sorcery | ghost | spirit | heaven | hell | devil | angel | occult | paranormal | religion | allegory | Bible | God | sin | alchemy | astrology | mystic | mysticism | Europe | European history | medieval | Renaissance | Shakespeare | Goethe | Henry James | 19th century America | metaphysics | pragmatism | death | afterlife | soul | phantom | myth | spell | wizard | wisdom

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT)

Description

Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of

Subjects

biological computing | Leonard Adleman | exquisite detection | whole-cell computing | computation | molecular biology | biotin-avidin | magnetic beads | cellular processes | combinatorial problems | self-assembly | nanodevices | molecular machines | quorum sensing | molecular switches | ciliates | molecular gates | molecular circuits | genetic switch | cellular networks | genetic networks | genetic circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterial engineering | biotechnology | cell-guiding surface | molecular biomaterials | drug release | polymers | pulsatile release | polymerization | polyer erosion | tissue engineering | hydrogels | adhesion | migration | drug diffusion | molecular switches | molecular motors | nanoparticles | microparticles | vaccines | drug targeting | micro carriers | nano carriers | intracellular drug delivery | 20.462 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata