Searching for heat : 1903 results found | RSS Feed for this search
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
18.303 Linear Partial Differential Equations: Analysis and Numerics (MIT)
Description
This course provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat/diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems.Subjects
diffusion | Laplace equations | Poisson | wave equations | separation of variables | Fourier series | Fourier transforms | eigenvalue problems | Green's function | Heat Equation | Sturm-Liouville Eigenvalue problems | quasilinear PDEs | Bessel functionsORDSLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.334 Statistical Mechanics II: Statistical Physics of Fields (MIT)
Description
This is the second term in a two-semester course on statistical mechanics. Basic principles are examined in 8.334, such as the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Topics from modern statistical mechanics are also explored including the hydrodynamic limit and classical field theories.Subjects
the hydrodynamic limit and classical field theories | Phase transitions and broken symmetries: universality | correlation functions | and scaling theory | The renormalization approach to collective phenomena | Dynamic critical behavior | Random systemsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata21L.006 American Literature (MIT)
Description
This is a HASS-D CI course. Like other communications-intensive courses in the humanities, arts, and social sciences, it allows students to produce 20 pages of polished writing with careful attention to revision. It also offers substantial opportunities for oral expression, through presentations of written work, student-led discussion, and class participation. The class has a low enrollment that ensures maximum attention to student writing and opportunity for oral expression, and a writing fellow/tutor is available for consultation on drafts and revisions.Subjects
William Bradford | Mary Rowlandson | Jonathan Edwards | Benjamin Franklin | Olaudah Equiano | Phyllis Wheatley | Washington Irving | Ralph Waldo Emerson | Henry David Thoreau | Nathaniel Hawthorne | Frederick Douglass | Herman Melville | Margaret Fuller | Harriet Beecher Stowe | Walt Whitman | Emily Dickinson | realism | satire | Rebecca Harding Davis | Samuel Clemens | Sarah Orne Jewett | Kate Chopin | Charlotte Perkins | Gilman | Edith Wharton | revision | Claude McKay | Zora Neale Hurston | Jean Toomer | Langston Hughes | Countee Cullen | Richard Wright | Toni MorrisonLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataCMS.801 Media in Transition (MIT)
Description
This course centers on historical eras in which the form and function of media technologies were radically transformed. It includes consideration of the "Gutenberg Revolution," the rise of modern mass media, and the "digital revolution," among other case studies of media transformation and cultural change. Readings cover cultural and social history and historiographic methods.Subjects
Media | mass media | history | Gutenberg | cultural change | cultural history | social history | historiographic method | books | medieval history | codex book | writing | printing | printing press | stage | theater | renaissance | romanticism | modernity | inventions | photography | nineteenth century | image | telegraph | electrification | communication | Morse | Daguerreotype | Fox Talbot | phonograph | sound recording | radio | broadcasting | film | video | cinema | publishingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata22.033 Nuclear Systems Design Project (MIT)
Description
Group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. Provides students with opportunity to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Past projects have included using a fusion reactor for transmutation of nuclear waste, design and development of a nuclear reactor for the manned mission to Mars. Meets with graduate subject 22.33.License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata3.021J Introduction to Modeling and Simulation (MIT)
Description
This course explores the basic concepts of computer modeling and simulation in science and engineering. We'll use techniques and software for simulation, data analysis and visualization. Continuum, mesoscale, atomistic and quantum methods are used to study fundamental and applied problems in physics, chemistry, materials science, mechanics, engineering, and biology. Examples drawn from the disciplines above are used to understand or characterize complex structures and materials, and complement experimental observations.Subjects
computer modeling | discrete particle system | continuum | continuum field | statistical sampling | data analysis | visualization | quantum | quantum method | chemical | molecular dynamics | Monte Carlo | mesoscale | continuum method | computational physics | chemistry | mechanics | materials science | biology | applied mathematics | fluid dynamics | heat | fractal | evolution | melting | gas | structural mechanics | FEM | finite elementLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata4.42J Fundamentals of Energy in Buildings (MIT)
Description
This subject provides a first course in thermo-sciences for students primarily interested in architecture and building technology. It introduces the fundamentals important to energy, ventilation, air conditioning and comfort in buildings. It includes a detailed treatment of different forms of energy, energy conservation, properties of gases and liquids, air-water vapor mixtures and performance limits for air conditioning and power producing systems. Heat transfer principles are introduced with applications to energy losses from a building envelope. The subject is a prerequisite for more advanced thermo-science subjects in Architecture and Mechanical Engineering.Subjects
energy in buildings | ventilation | air conditioning | forms of energy | energy conservation | heat transfer | energy losses from buildingsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata18.311 Principles of Applied Mathematics (MIT)
Description
This course introduces fundamental concepts in "continuous'' applied mathematics, with an emphasis on nonlinear partial differential equations (PDEs). Topics include linear and nonlinear waves: kinematic waves, method of characteristics, expansion fans, wave breaking, shock dynamics, shock structure; linear and nonlinear diffusion: Green functions, Fourier transform, similarity solutions, boundary layers, Nernst-Planck equations. Applications include traffic flow, gas dynamics, and granular flow.Subjects
Linear and nonlinear waves | hyperbolic waves | kinematic waves | expansion fans | shock dynamics | shock structure | Linear diffusion | nonlinear diffusion | Green functions | Fourier transform | dimensional analysis | similarity solutions | boundary layers | traffic flow | gas dynamics | tsunamis | heat transfer | ion transport | granular flowLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata21M.606 Introduction to Stagecraft (MIT)
Description
Offered annually in the spring term, Introduction to Stagecraft is a hands-on course that gets students working with the tools and techniques of theatrical production in a practical way. It is not a design course but one devoted to artisanship. Among the many remarkable final projects that have been proposed and presented at the end of the course have been a Renaissance hourglass blown in the MIT glass shop and set into a frame turned on our set shop lathe; a four harness loom built by a student who then wove cloth on it; a number of chain mail tunics and coifs; a wide variety of costume and furniture pieces and electrified period lighting fixtures.Subjects
stagecraft | shop skills | shop machines | basic handwork | tools | scenery | costume | set constuction | props | stage management | lighting | make-up | scene paintingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.020 Ecology II: Engineering for Sustainability (MIT)
Description
This course covers the use of ecological and thermodynamic principles to examine interactions between humans and the natural environment. Topics include conservation and constitutive laws, box models, feedback, thermodynamic concepts, energy in natural and engineered systems, basic transport concepts, life cycle analysis and related economic methods.Topics such as renewable energy, sustainable agriculture, green buildings, and mitigation of climate change are illustrated with quantitative case studies. Case studies are team-oriented and may include numerical simulations and design exercises. Some programming experience is desirable but not a prerequisite. Instruction and practice in oral and written communication are provided.Subjects
systems | conservation laws | constitutive laws | box models | mass conservation | perturbation methods | thermodymanics | heat transfer | enthalpy | entropy | multiphase systems | mass and energy balances | energy supply options | economic value | natural resources | multiobjective analysis | life cycle analysis | mass and energy transport | green buildings | transportation modeling | renewable energy | climate modelingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata22.00J Introduction to Modeling and Simulation (MIT)
Description
This course surveys the basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. It covers techniques and software for statistical sampling, simulation, data analysis and visualization, and uses statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications are drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal footing with theory and experiment. A term project allows development of individual interests. Students are mentorSubjects
computer modeling | discrete particle system | continuum | continuum field | statistical sampling | data analysis | visualization | quantum | quantum method | chemical | molecular dynamics | Monte Carlo | mesoscale | continuum method | computational physics | chemistry | mechanics | materials science | biology; applied mathematics | fluid dynamics | heat | fractal | evolution | melting | gas | structural mechanics | FEM | finite element | biology | applied mathematics | 1.021 | 2.030 | 3.021 | 10.333 | 18.361 | HST.588 | 22.00License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.642 Continuum Electromechanics (MIT)
Description
This course focuses on laws, approximations, and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. See the syllabus section for a more detailed list of topics.Subjects
continuum mechanics | electromechanics | mechanical and electromechanical transfer relations | statics | dynamics | electromechanical systems | static equililbrium | electromechanical flows | field coupling | thermal and molecular diffusion | electrokinetics | streaming interactions | materials processing | magnetohydrodynamic and electrohydrodynamic pumps and generators | ferrohydrodynamics | physiochemical systems | heat transfer | continuum feedback control | electron beam devices | plasma dynamicsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.334 Statistical Mechanics II: Statistical Mechanics of Fields (MIT)
Description
This is the second term in a two-semester course on statistical mechanics. Basic principles are examined in 8.334, such as the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Topics from modern statistical mechanics are also explored including the hydrodynamic limit and classical field theories.Subjects
the hydrodynamic limit and classical field theories | Phase transitions and broken symmetries: universality | correlation functions | and scaling theory | The renormalization approach to collective phenomena | Dynamic critical behavior | Random systems | correlation functions | and scaling theory | Phase transitions and broken symmetries: universality | correlation functions | and scaling theoryLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata12.301 Past and Present Climate (12.301) / Climate Physics and Chemistry (12.842) (MIT)
Description
This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history.Subjects
climate | climate change | proxies | ice cores | primordial atmosphere | ozone chemistry | carbon and oxygen cycles | heat and water budgets | aerosols | water vapor | clouds | ocean circulation | orbital variations | volcanism | plate tectonics | solar system | solar variability | climate model | energy balanceLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata13.00 Introduction to Ocean Science and Technology (MIT)
Description
Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific iSubjects
Physical oceanography | | major ocean circulations | | geostrophic flows | | Surface waves | | wave velocities | | propagation phenomena | | ocean acoustics | | sonarLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata21G.101 Chinese I (Regular) (MIT)
Description
This subject is the first semester of two that form an introduction to modern standard Chinese, commonly called Mandarin. Though not everyone taking this course will be an absolute beginner, the course presupposes no prior background in the language. The emphasis is on developing (a) basic conversational abilities (pronunciation, fundamental grammatical patterns, common vocabulary, and standard usage), (b) basic reading and writing skills, and (c) an understanding of the language learning process so that students are able to continue studying effectively on their own.The main text is J. K. Wheatley’s Learning Chinese: A Foundation Course in Mandarin, part I (unpublished, but available online), which consists of several introductory chapters, seven core lessons (labeled 1, 2, 3&amSubjects
Asia | China | Culture | Language | Mandarin | Speaking | Writing | aural comprehension | chinese | composition | conversational fluency | grammar | pronunciation | reading competence | romanization | simplified characters | traditional characters | vocabularyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.333 Statistical Mechanics (MIT)
Description
8.333 is the first course in a two-semester sequence on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, micro canonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory.Subjects
hermodynamics | entropy | mehanics | microcanonical distributions | canonical distributions | grand canonical distributions | lattice vibrations | ideal gas | photon gas | quantum statistical mechanics | Fermi systems | Bose systems | cluster expansions | van der Waal's gas | mean-field theoryLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.011 Introduction to Ocean Science and Technology (13.00) (MIT)
Description
Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.00. In 2005, ocean engineering subjects became part of Course 2 (Department of MecSubjects
Physical oceanography | | major ocean circulations | | geostrophic flows | | Surface waves | | wave velocities | | propagation phenomena | | ocean acoustics | | sonarLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata18.086 Mathematical Methods for Engineers II (MIT)
Description
This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. MATLAB® software is required to run the .m files found on this course site.Subjects
Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Complex variables and applications | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Optimization: network flows | linear programmingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.103 Civil Engineering Materials Laboratory (MIT)
Description
This course introduces the concepts, techniques, and devices used to measure engineering properties of materials. There is an emphasis on measurement of load-deformation characteristics and failure modes of both natural and fabricated materials. Weekly experiments include data collection, data analysis, and interpretation and presentation of results.Subjects
materials laboratory | load-deformation characteristics | failure modes | experiments | data collection | data analysis | tension | elastic behavior | direct shear | friction | concrete | early age properties | compression | directionality | soil classification | consolidation test | heat treatmentLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.693 Principles of Oceanographic Instrument Systems -- Sensors and Measurements (13.998) (MIT)
Description
This course introduces theoretical and practical principles of design of oceanographic sensor systems. Topics include: transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, velocity, heat flow, and optical devices; limitations on these devices imposed by ocean environments; signal conditioning and recording; noise, sensitivity, and sampling limitations; and standards. Lectures by experts cover the principles of state-of-the-art systems being used in physical oceanography, geophysics, submersibles, acoustics. For lab work, day cruises in local waters allow students to prepare, deploy and analyze observations from standard oceanographic instruments.Subjects
Oceanography | monitoring | instrumentation | experiment | sampling | transducer | meteorology | calibration | noise | ocean | water | sea water | telemetry | data recorder | satellite | current | salinity | pressure | corrosion | underwaterLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.016 Hydrodynamics (13.012) (MIT)
Description
This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations andSubjects
fluid mechanics | mass | momentum | energy | lift | drag | laminar | turbulent | turbulence | wave | waves | surface waves | current | water | ocean | force | sea | sea wave | ship | propulsion | propeller | fish | swimming | wind | VIV | vortex induced vibration | Bernoulli | D'Allembert | hydrostatics | fluid dynamicsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.002 Mechanics and Materials II (MIT)
Description
This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.Subjects
beam bending | buckling | vibration | polymers | viscoelasticity | strength | ductility | stress | stress concentration | sheet bending | heat treatment | fracture | plasticity | creep | fatigue | solid materials | mechanical loading | thermal loading | design-limiting behavior | stiffness | toughness | durability | engineering materials | materials-limiting problem | materials selectionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.27 Turbulent Flow and Transport (MIT)
Description
Turbulent flows, with emphasis on engineering methods. Governing equations for momentum, energy, and species transfer. Turbulence: its production, dissipation, and scaling laws. Reynolds averaged equations for momentum, energy, and species transfer. Simple closure approaches for free and bounded turbulent shear flows. Applications to jets, pipe and channel flows, boundary layers, buoyant plumes and thermals, and Taylor dispersion, etc., including heat and species transport as well as flow fields. Introduction to more complex closure schemes, including the k-epsilon, and statistical methods in turbulence.Subjects
Turbulent Flow | | Fundamental Laws | | Turbulent Boundary Layers | | Free Shear Flows | Fluid dynamicsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.334 Statistical Mechanics II: Statistical Physics of Fields (MIT)
Description
This is the second term in a two-semester course on statistical mechanics. Basic principles are examined in this class, such as the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Topics from modern statistical mechanics are also explored, including the hydrodynamic limit and classical field theories.Subjects
the hydrodynamic limit and classical field theories | Phase transitions and broken symmetries: universality | correlation functions | and scaling theory | The renormalization approach to collective phenomena | Dynamic critical behavior | Random systemsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata