Searching for Boltzmann equation : 6 results found | RSS Feed for this search

2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanotechnology | nanoscale | nanoscale | transport phenomena | transport phenomena | photons | photons | electrons | electrons | phonons | phonons | energy carriers | energy carriers | energy transport | energy transport | heat transport | heat transport | energy levels | energy levels | statistical behavior | statistical behavior | internal energy | internal energy | waves and particles | waves and particles | scattering | scattering | heat generation | heat generation | Boltzmann equation | Boltzmann equation | classical laws | classical laws | microtechnology | microtechnology | crystal | crystal | lattice | lattice | quantum oscillator | quantum oscillator | laudaurer | laudaurer | nanotube | nanotube | Louiville equation | Louiville equation | X-ray | X-ray | blackbody | blackbody | quantum well | quantum well | Fourier | Fourier | Newton | Newton | Ohm | Ohm | thermoelectric effect | thermoelectric effect | Brownian motion | Brownian motion | surface tension | surface tension | van der Waals potential. | van der Waals potential. | van der Waals potential | van der Waals potential

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.902 Astrophysics II (MIT) 8.902 Astrophysics II (MIT)

Description

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation. This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Subjects

Galactic dynamics | Galactic dynamics | potential theory | potential theory | orbits | orbits | collisionless Boltzmann equations | collisionless Boltzmann equations | Galaxy interactions | Galaxy interactions | Groups and clusters | Groups and clusters | dark matter | dark matter | Intergalactic medium | Intergalactic medium | x-ray clusters | x-ray clusters | Active galactic nuclei | Active galactic nuclei | unified models | unified models | black hole accretion | black hole accretion | radio and optical jets | radio and optical jets | Homogeneity and isotropy | Homogeneity and isotropy | redshift | redshift | galaxy distance ladder | galaxy distance ladder | Newtonian cosmology | Newtonian cosmology | Roberston-Walker models and cosmography | Roberston-Walker models and cosmography | Early universe | Early universe | primordial nucleosynthesis | primordial nucleosynthesis | recombination | recombination | Cosmic microwave background radiation | Cosmic microwave background radiation | Large-scale structure | Large-scale structure | galaxy formation | galaxy formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.55 Ionized Gases (MIT) 16.55 Ionized Gases (MIT)

Description

This course highlights the properties and behavior of low-temperature plasmas in relation to energy conversion, plasma propulsion, and gas lasers. The course includes material on the equilibrium (energy states, statistical mechanics, and relationship to thermodynamics) and kinetic theory of ionized gases (motion of charged particles, distribution function, collisions, characteristic lengths and times, cross sections, and transport properties). In addition, the course discusses gas surface interactions (thermionic emission, sheaths, and probe theory) and radiation in plasmas and diagnostics. This course highlights the properties and behavior of low-temperature plasmas in relation to energy conversion, plasma propulsion, and gas lasers. The course includes material on the equilibrium (energy states, statistical mechanics, and relationship to thermodynamics) and kinetic theory of ionized gases (motion of charged particles, distribution function, collisions, characteristic lengths and times, cross sections, and transport properties). In addition, the course discusses gas surface interactions (thermionic emission, sheaths, and probe theory) and radiation in plasmas and diagnostics.

Subjects

Ionized gases | Ionized gases | plasma physics | plasma physics | motion of charges | motion of charges | drift | drift | adiabatic invariants | adiabatic invariants | collision theory | collision theory | kinetic theory | kinetic theory | H theorem | H theorem | entropy | entropy | Maxwellian distribution | Maxwellian distribution | Boltzmann equation | Boltzmann equation | plasma sheath | plasma sheath | electrostatic probe | electrostatic probe | orbital motion limit | orbital motion limit | equilibrium statistical mechanics | equilibrium statistical mechanics | radiation transport | radiation transport

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanoscale | transport phenomena | photons | electrons | phonons | energy carriers | energy transport | heat transport | energy levels | statistical behavior | internal energy | waves and particles | scattering | heat generation | Boltzmann equation | classical laws | microtechnology | crystal | lattice | quantum oscillator | laudaurer | nanotube | Louiville equation | X-ray | blackbody | quantum well | Fourier | Newton | Ohm | thermoelectric effect | Brownian motion | surface tension | van der Waals potential. | van der Waals potential

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.902 Astrophysics II (MIT)

Description

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Subjects

Galactic dynamics | potential theory | orbits | collisionless Boltzmann equations | Galaxy interactions | Groups and clusters | dark matter | Intergalactic medium | x-ray clusters | Active galactic nuclei | unified models | black hole accretion | radio and optical jets | Homogeneity and isotropy | redshift | galaxy distance ladder | Newtonian cosmology | Roberston-Walker models and cosmography | Early universe | primordial nucleosynthesis | recombination | Cosmic microwave background radiation | Large-scale structure | galaxy formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.55 Ionized Gases (MIT)

Description

This course highlights the properties and behavior of low-temperature plasmas in relation to energy conversion, plasma propulsion, and gas lasers. The course includes material on the equilibrium (energy states, statistical mechanics, and relationship to thermodynamics) and kinetic theory of ionized gases (motion of charged particles, distribution function, collisions, characteristic lengths and times, cross sections, and transport properties). In addition, the course discusses gas surface interactions (thermionic emission, sheaths, and probe theory) and radiation in plasmas and diagnostics.

Subjects

Ionized gases | plasma physics | motion of charges | drift | adiabatic invariants | collision theory | kinetic theory | H theorem | entropy | Maxwellian distribution | Boltzmann equation | plasma sheath | electrostatic probe | orbital motion limit | equilibrium statistical mechanics | radiation transport

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata