Searching for Born approximation : 13 results found | RSS Feed for this search

1

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory | quantum physics | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06. Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT) 8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement. 8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | eigenstates | uncertainty relation | uncertainty relation | observables | observables | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT) 8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation. 8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | uncertainty relation | observables | observables | eigenstates | eigenstates | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | quantization | quantization | EM radiation field | EM radiation field | electromagnetic radiation field | electromagnetic radiation field | adiabatic theorem | adiabatic theorem | Berry?s phase | Berry?s phase | many-particle systems | many-particle systems | Dirac equation | Dirac equation | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering. 8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.

Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.

Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata