Searching for Born-Oppenheimer : 9 results found | RSS Feed for this search

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory | quantum physics | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.80 Small-Molecule Spectroscopy and Dynamics (MIT) 5.80 Small-Molecule Spectroscopy and Dynamics (MIT)

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy. The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.

Subjects

spectroscopy | spectroscopy | harmonic oscillators | harmonic oscillators | matrix | matrix | hamiltonian | hamiltonian | heisenberg | heisenberg | vibrating rotor | vibrating rotor | Born-Oppenheimer | Born-Oppenheimer | diatomics | diatomics | laser schemes | laser schemes | angular momentum | angular momentum | hund's cases | hund's cases | energy levels | energy levels | second-order effects | second-order effects | perturbations | perturbations | Wigner-Eckart | Wigner-Eckart | Rydberg-Klein-Rees | Rydberg-Klein-Rees | rigid rotor | rigid rotor | asymmetric rotor | asymmetric rotor | vibronic coupling | vibronic coupling | wavepackets | wavepackets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06. Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT) 8.06 Quantum Physics III (MIT)

Description

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering. 8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subjects

natural units | natural units | scales of microscopic phenomena | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | variational method | Born-Oppenheimer approximation | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | spin-orbit and relativistic corrections | Zeeman and Stark effects | Zeeman and Stark effects | Charged particles in a magnetic field | Charged particles in a magnetic field | Landau levels | Landau levels | integer quantum hall effect | integer quantum hall effect | Scattering | Scattering | partial waves | partial waves | Born approximation | Born approximation | Time-dependent perturbation theory | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

This course is a continuation of 8.05, Quantum Physics II. Content includes:Natural UnitsCharged particles in a magnetic fieldTime-independent perturbation theoryVariational and semi-classical methodsQuantum ComputingThe adiabatic approximation and Berry’s phaseScatteringTime-dependent perturbation theory

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory | quantum physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.06 Quantum Physics III (MIT)

Description

Together, this course and its predecessor, 8.05: Quantum Physics II, cover quantum physics with applications drawn from modern physics. Topics in this course include units, time-independent approximation methods, the structure of one- and two-electron atoms, charged particles in a magnetic field, scattering, and time-dependent perturbation theory. In this second term, students are required to research and write a paper on a topic related to the content of 8.05 and 8.06.

Subjects

natural units | scales of microscopic phenomena | Time-independent approximation methods: degenerate and non-degenerate perturbation theory | variational method | Born-Oppenheimer approximation | spin-orbit and relativistic corrections | Zeeman and Stark effects | Charged particles in a magnetic field | Landau levels | integer quantum hall effect | Scattering | partial waves | Born approximation | Time-dependent perturbation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.80 Small-Molecule Spectroscopy and Dynamics (MIT)

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.

Subjects

spectroscopy | harmonic oscillators | matrix | hamiltonian | heisenberg | vibrating rotor | Born-Oppenheimer | diatomics | laser schemes | angular momentum | hund's cases | energy levels | second-order effects | perturbations | Wigner-Eckart | Rydberg-Klein-Rees | rigid rotor | asymmetric rotor | vibronic coupling | wavepackets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata