Searching for EPA : 16 results found | RSS Feed for this search

1

BE.104J Chemicals in the Environment: Toxicology and Public Health (MIT) BE.104J Chemicals in the Environment: Toxicology and Public Health (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest. This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subjects

biostatistics | biostatistics | risk | risk | risk analysis | risk analysis | risk factor | risk factor | environmental agent | environmental agent | environetics | environetics | cause and effect | cause and effect | pollution | pollution | statistical analysis | statistical analysis | toxic | toxic | genetics | genetics | disease | disease | health | health | EPA | EPA | metabolism | metabolism | endocrine | endocrine | immunity | immunity | uncertainty | uncertainty | mortality | mortality | death rate | death rate | prediction | prediction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT) 1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements. 1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste containment | waste remediation | waste remediation | soil remediation | soil remediation | groundwater remediation | groundwater remediation | contaminated site | contaminated site | contamination | contamination | waste disposal | waste disposal | mass transport | mass transport | Superfund | Superfund | EPA | EPA | USGS | USGS | air sparging | air sparging | air stripper | air stripper | bioremediation | bioremediation | soil vapor extraction | soil vapor extraction | SVE | SVE | pump and treat | pump and treat | landfill | landfill | leachate | leachate | chlorinated solvent | chlorinated solvent | NAPL | NAPL | LNAPL | LNAPL | DNAPL | DNAPL | TCE | TCE | PCE | PCE | risk assessment | risk assessment | soil liner | soil liner | clay liner | clay liner | geomembrane | geomembrane | brownfield | brownfield | remediation technologies | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.959 Reforming Natural Resources Governance: Failings of Scientific Rationalism and Alternatives for Building Common Ground (MIT) 11.959 Reforming Natural Resources Governance: Failings of Scientific Rationalism and Alternatives for Building Common Ground (MIT)

Description

For the last century, precepts of scientific management and administrative rationality have concentrated power in the hands of technical specialists, which in recent decades has contributed to widespread disenfranchisement and discontent among stakeholders in natural resources cases. In this seminar we examine the limitations of scientific management as a model both for governance and for gathering and using information, and describe alternative methods for informing and organizing decision-making processes. We feature cases involving large carnivores in the West (mountain lions and grizzly bears), Northeast coastal fisheries, and adaptive management of the Colorado River. There will be nightly readings and a short written assignment. For the last century, precepts of scientific management and administrative rationality have concentrated power in the hands of technical specialists, which in recent decades has contributed to widespread disenfranchisement and discontent among stakeholders in natural resources cases. In this seminar we examine the limitations of scientific management as a model both for governance and for gathering and using information, and describe alternative methods for informing and organizing decision-making processes. We feature cases involving large carnivores in the West (mountain lions and grizzly bears), Northeast coastal fisheries, and adaptive management of the Colorado River. There will be nightly readings and a short written assignment.

Subjects

role-play simulation | role-play simulation | policymakers | policymakers | Cape Wind controversy | Cape Wind controversy | wind farms | wind farms | wind farm | wind farm | ecosystems | ecosystems | natural resources management | natural resources management | environmental policy-making | environmental policy-making | science organizations | science organizations | science | science | decision-making | decision-making | science agencies | science agencies | National Environmental Policy Act | National Environmental Policy Act | NEPA | NEPA | scientists | scientists | society | society | collaborative approaches | collaborative approaches | joint fact finding | joint fact finding | environment | environment | policy making | policy making | decision making | decision making | ethics in science | ethics in science | values | values | environmental policy | environmental policy | collaborative learning | collaborative learning | local and indigenous knowledge | local and indigenous knowledge | adaptive management | adaptive management | adaptive governance | adaptive governance | eco-system management | eco-system management | USGS | USGS | United States Geological Survey | United States Geological Survey

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.942 Use of Joint Fact Finding in Science Intensive Policy Disputes, Part II (MIT) 11.942 Use of Joint Fact Finding in Science Intensive Policy Disputes, Part II (MIT)

Description

This course makes up the second half of a year-long seminar on Joint Fact Finding in Science-Intensive Disputes. In 11.941, the first half of the seminar, students analyzed and discussed cases that involved or that should have involved Joint Fact Finding of various kinds. In this portion, students concentrate on gathering information to assist in resolving the Cape Wind project, the dispute concerning the placement of wind farms in waters adjacent to Nantucket. Students will lay the groundwork for a collaborative project that includes Federal and State agencies, academic institutions and non-profits. This course makes up the second half of a year-long seminar on Joint Fact Finding in Science-Intensive Disputes. In 11.941, the first half of the seminar, students analyzed and discussed cases that involved or that should have involved Joint Fact Finding of various kinds. In this portion, students concentrate on gathering information to assist in resolving the Cape Wind project, the dispute concerning the placement of wind farms in waters adjacent to Nantucket. Students will lay the groundwork for a collaborative project that includes Federal and State agencies, academic institutions and non-profits.

Subjects

role-play simulation | role-play simulation | policymakers | policymakers | Cape Wind controversy | Cape Wind controversy | wind farms | wind farms | windfarm | windfarm | ecosystems | ecosystems | natural resources management | natural resources management | environmental policy-making | environmental policy-making | science organizations | science organizations | science | science | decision-making | decision-making | science agencies | science agencies | National Environmental Policy Act | National Environmental Policy Act | NEPA | NEPA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.104J Chemicals in the Environment: Toxicology and Public Health (BE.104J) (MIT) 20.104J Chemicals in the Environment: Toxicology and Public Health (BE.104J) (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest. This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subjects

biostatistics | biostatistics | risk | risk | risk analysis | risk analysis | risk factor | risk factor | environmental agent | environmental agent | environetics | environetics | cause and effect | cause and effect | pollution | pollution | statistical analysis | statistical analysis | toxic | toxic | genetics | genetics | disease | disease | health | health | EPA | EPA | metabolism | metabolism | endocrine | endocrine | immunity | immunity | uncertainty | uncertainty | mortality | mortality | death rate | death rate | prediction | prediction | 20.104 | 20.104 | 1.081 | 1.081 | ESD.053 | ESD.053 | BE.104J | BE.104J | BE.104 | BE.104

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.207 The Energy Crisis: Past and Present (MIT) 21H.207 The Energy Crisis: Past and Present (MIT)

Description

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th

Subjects

energy | energy | USA | USA | oil embargo | oil embargo | Gulf War | Gulf War | Richard Nixon | Richard Nixon | Ronald Reagan | Ronald Reagan | Jimmy Carter | Jimmy Carter | George Bush | George Bush | nuclear power | nuclear power | wind power | wind power | fossil fuel | fossil fuel | automobiles | automobiles | suburbia | suburbia | Iran Hostage Crisis | Iran Hostage Crisis | climate change | climate change | global warming | global warming | oil drilling | oil drilling | Kyoto Protocol | Kyoto Protocol | solar power | solar power | OPEC | OPEC | EPA | EPA | Earth Day | Earth Day | environmentalism | environmentalism | atomic bomb | atomic bomb | Gerald Ford | Gerald Ford | Levittown | Levittown | Manhattan Project | Manhattan Project

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.10 Introduction to Technology and Policy (MIT) ESD.10 Introduction to Technology and Policy (MIT)

Description

This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g

Subjects

Politics | Politics | decision making | decision making | negotiation | negotiation | planning | planning | wedge game | wedge game | climate change | climate change | global warming | global warming | NRC | NRC | nuclear power | nuclear power | nuclear energy | nuclear energy | nuclear proliferation | nuclear proliferation | government | government | public policy | public policy | globalization | globalization | science | science | EPA | EPA | NSF | NSF | transportation | transportation | urban planning | urban planning | standards | standards | risk | risk | risk assessment | risk assessment | engineering | engineering | energy | energy | internet | internet | network neutrality | network neutrality | regulation | regulation | security | security | 9/11 | 9/11 | September 11 | September 11 | terrorism | terrorism | defense | defense | tradeoff | tradeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ÍSTICA (2010)

Description

La asignatura pretende ofrecer al alumno una base suficiente para resolver los problemas logísticos en los que interviene el transporte. Se persigue un dominio suficiente de los instrumentos logísticos y de las técnicas de investigación operativa aplicada que sustentan una buena parte de los mismos.

Subjects

INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | DISTRIBUCION FISICA | GESTION DE STOCKS | INVESTIGACION OPERATIVA | LOGISTICA | REDES | RUTAS DE REPARTO | TRANSPORTE

License

http://creativecommons.org/licenses/by-nc-nd/2.5/es/

Site sourced from

http://www.upv.es/pls/oalu/sic_rss.rss_ocw

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste remediation | soil remediation | groundwater remediation | contaminated site | contamination | waste disposal | mass transport | Superfund | EPA | USGS | air sparging | air stripper | bioremediation | soil vapor extraction | SVE | pump and treat | landfill | leachate | chlorinated solvent | NAPL | LNAPL | DNAPL | TCE | PCE | risk assessment | soil liner | clay liner | geomembrane | brownfield | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.104J Chemicals in the Environment: Toxicology and Public Health (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subjects

biostatistics | risk | risk analysis | risk factor | environmental agent | environetics | cause and effect | pollution | statistical analysis | toxic | genetics | disease | health | EPA | metabolism | endocrine | immunity | uncertainty | mortality | death rate | prediction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.34 Waste Containment and Remediation Technology (MIT)

Description

1.34 focuses on the geotechnical aspects of hazardous waste management, with specific emphasis on the design of land-based waste containment structures and hazardous waste remediation. Topics include: introduction to hazardous waste, definition of hazardous waste, regulatory requirements, waste characteristics, geo-chemistry, and contaminant transport; the design and operation of waste containment structures, landfills, impoundments, and mine-waste disposal; the characterization and remediation of contaminated sites, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies; and monitoring requirements.

Subjects

waste containment | waste remediation | soil remediation | groundwater remediation | contaminated site | contamination | waste disposal | mass transport | Superfund | EPA | USGS | air sparging | air stripper | bioremediation | soil vapor extraction | SVE | pump and treat | landfill | leachate | chlorinated solvent | NAPL | LNAPL | DNAPL | TCE | PCE | risk assessment | soil liner | clay liner | geomembrane | brownfield | remediation technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.104J Chemicals in the Environment: Toxicology and Public Health (BE.104J) (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.

Subjects

biostatistics | risk | risk analysis | risk factor | environmental agent | environetics | cause and effect | pollution | statistical analysis | toxic | genetics | disease | health | EPA | metabolism | endocrine | immunity | uncertainty | mortality | death rate | prediction | 20.104 | 1.081 | ESD.053 | BE.104J | BE.104

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.207 The Energy Crisis: Past and Present (MIT)

Description

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th

Subjects

energy | USA | oil embargo | Gulf War | Richard Nixon | Ronald Reagan | Jimmy Carter | George Bush | nuclear power | wind power | fossil fuel | automobiles | suburbia | Iran Hostage Crisis | climate change | global warming | oil drilling | Kyoto Protocol | solar power | OPEC | EPA | Earth Day | environmentalism | atomic bomb | Gerald Ford | Levittown | Manhattan Project

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.959 Reforming Natural Resources Governance: Failings of Scientific Rationalism and Alternatives for Building Common Ground (MIT)

Description

For the last century, precepts of scientific management and administrative rationality have concentrated power in the hands of technical specialists, which in recent decades has contributed to widespread disenfranchisement and discontent among stakeholders in natural resources cases. In this seminar we examine the limitations of scientific management as a model both for governance and for gathering and using information, and describe alternative methods for informing and organizing decision-making processes. We feature cases involving large carnivores in the West (mountain lions and grizzly bears), Northeast coastal fisheries, and adaptive management of the Colorado River. There will be nightly readings and a short written assignment.

Subjects

role-play simulation | policymakers | Cape Wind controversy | wind farms | wind farm | ecosystems | natural resources management | environmental policy-making | science organizations | science | decision-making | science agencies | National Environmental Policy Act | NEPA | scientists | society | collaborative approaches | joint fact finding | environment | policy making | decision making | ethics in science | values | environmental policy | collaborative learning | local and indigenous knowledge | adaptive management | adaptive governance | eco-system management | USGS | United States Geological Survey

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.10 Introduction to Technology and Policy (MIT)

Description

This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g

Subjects

Politics | decision making | negotiation | planning | wedge game | climate change | global warming | NRC | nuclear power | nuclear energy | nuclear proliferation | government | public policy | globalization | science | EPA | NSF | transportation | urban planning | standards | risk | risk assessment | engineering | energy | internet | network neutrality | regulation | security | 9/11 | September 11 | terrorism | defense | tradeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.942 Use of Joint Fact Finding in Science Intensive Policy Disputes, Part II (MIT)

Description

This course makes up the second half of a year-long seminar on Joint Fact Finding in Science-Intensive Disputes. In 11.941, the first half of the seminar, students analyzed and discussed cases that involved or that should have involved Joint Fact Finding of various kinds. In this portion, students concentrate on gathering information to assist in resolving the Cape Wind project, the dispute concerning the placement of wind farms in waters adjacent to Nantucket. Students will lay the groundwork for a collaborative project that includes Federal and State agencies, academic institutions and non-profits.

Subjects

role-play simulation | policymakers | Cape Wind controversy | wind farms | windfarm | ecosystems | natural resources management | environmental policy-making | science organizations | science | decision-making | science agencies | National Environmental Policy Act | NEPA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata