Searching for Gantt chart : 5 results found | RSS Feed for this search

2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology | machine design | machine design | hardware | hardware | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabrication | lathe | lathe | precision engineering | precision engineering | group project | group project | project management | project management | CAD | CAD | fatigue | fatigue | Gantt chart | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S06 Prototypes to Products (MIT) EC.S06 Prototypes to Products (MIT)

Description

Includes audio/video content: AV special element video. For students and teams who have started a sustainable-development project in D-Lab (EC.701J or EC.720J), Product Engineering Processes (2.009), or elsewhere, this class provides a setting to continue developing projects for field implementation. Topics covered include prototyping techniques, materials selection, design-for-manufacturing, field-testing, and project management. All classwork will directly relate to the students' projects, and the instructor will consult on the projects during weekly lab time. There are no exams. Teams are encouraged to enroll together. Includes audio/video content: AV special element video. For students and teams who have started a sustainable-development project in D-Lab (EC.701J or EC.720J), Product Engineering Processes (2.009), or elsewhere, this class provides a setting to continue developing projects for field implementation. Topics covered include prototyping techniques, materials selection, design-for-manufacturing, field-testing, and project management. All classwork will directly relate to the students' projects, and the instructor will consult on the projects during weekly lab time. There are no exams. Teams are encouraged to enroll together.

Subjects

solar water disinfection | solar water disinfection | SODIS | SODIS | internet kiosk | internet kiosk | developing nation | developing nation | appropriate technology | appropriate technology | sustainable development | sustainable development | international development | international development | prototyping | prototyping | product design | product design | Gantt chart | Gantt chart | Pert chart | Pert chart | SWOT | SWOT | funding | funding | entrepreneurship | entrepreneurship

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.724 Prototypes to Products (MIT)

Description

For students and teams who have started a sustainable-development project in D-Lab (SP.776), Product Engineering Processes (2.009), or elsewhere, this class provides a setting to continue developing projects for field implementation. Topics covered include prototyping techniques, materials selection, design-for-manufacturing, field-testing, and project management. All classwork will directly relate to the students' projects, and the instructor will consult on the projects during weekly lab time. There are no exams. Teams are encouraged to enroll together.

Subjects

solar water disinfection | SODIS | internet kiosk | developing nation | appropriate technology | sustainable development | international development | prototyping | product design | Gantt chart | Pert chart | SWOT | funding | entrepreneurship

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | chemistry | synthetic biology | project | biotech | genetic engineering | GMO | ethics | biomedical ethics | genetics | recombinant DNA | DNA | gene sequencing | gene synthesis | biohacking | computational biology | iGEM | BioBrick | systems biology | machine design | hardware | machine element | design process | design layout | prototype | mechanism | engineering | fabrication | lathe | precision engineering | group project | project management | CAD | fatigue | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S06 Prototypes to Products (MIT)

Description

For students and teams who have started a sustainable-development project in D-Lab (EC.701J or EC.720J), Product Engineering Processes (2.009), or elsewhere, this class provides a setting to continue developing projects for field implementation. Topics covered include prototyping techniques, materials selection, design-for-manufacturing, field-testing, and project management. All classwork will directly relate to the students' projects, and the instructor will consult on the projects during weekly lab time. There are no exams. Teams are encouraged to enroll together.

Subjects

solar water disinfection | SODIS | internet kiosk | developing nation | appropriate technology | sustainable development | international development | prototyping | product design | Gantt chart | Pert chart | SWOT | funding | entrepreneurship

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata