Searching for Monte Carlo : 112 results found | RSS Feed for this search

1 2 3 4

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas. This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

Neutron Interaction | Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Chemical Binding Effects | Particle Simulations I | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | The Neutron Transport Equation | Neutron Slowing Down | Neutron Slowing Down | Neutron Diffusion | Neutron Diffusion | Particle Simulation Methods | Particle Simulation Methods | Basic Molecular Dynamics | Basic Molecular Dynamics | Direct Simulation of Melting | Direct Simulation of Melting | Multiscale Materials Modeling | Multiscale Materials Modeling | Thermal Neutron Scattering | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students. This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.

Subjects

Neutron Interaction | Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Chemical Binding Effects | Particle Simulations I | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | The Neutron Transport Equation | Neutron Slowing Down | Neutron Slowing Down | Neutron Diffusion | Neutron Diffusion | Particle Simulation Methods | Particle Simulation Methods | Basic Molecular Dynamics | Basic Molecular Dynamics | Direct Simulation of Melting | Direct Simulation of Melting | Multiscale Materials Modeling | Multiscale Materials Modeling | Thermal Neutron Scattering | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.021J Introduction to Modeling and Simulation (MIT) 3.021J Introduction to Modeling and Simulation (MIT)

Description

This course explores the basic concepts of computer modeling and simulation in science and engineering. We'll use techniques and software for simulation, data analysis and visualization. Continuum, mesoscale, atomistic and quantum methods are used to study fundamental and applied problems in physics, chemistry, materials science, mechanics, engineering, and biology. Examples drawn from the disciplines above are used to understand or characterize complex structures and materials, and complement experimental observations. This course explores the basic concepts of computer modeling and simulation in science and engineering. We'll use techniques and software for simulation, data analysis and visualization. Continuum, mesoscale, atomistic and quantum methods are used to study fundamental and applied problems in physics, chemistry, materials science, mechanics, engineering, and biology. Examples drawn from the disciplines above are used to understand or characterize complex structures and materials, and complement experimental observations.

Subjects

computer modeling | computer modeling | discrete particle system | discrete particle system | continuum | continuum | continuum field | continuum field | statistical sampling | statistical sampling | data analysis | data analysis | visualization | visualization | quantum | quantum | quantum method | quantum method | chemical | chemical | molecular dynamics | molecular dynamics | Monte Carlo | Monte Carlo | mesoscale | mesoscale | continuum method | continuum method | computational physics | computational physics | chemistry | chemistry | mechanics | mechanics | materials science | materials science | biology | biology | applied mathematics | applied mathematics | fluid dynamics | fluid dynamics | heat | heat | fractal | fractal | evolution | evolution | melting | melting | gas | gas | structural mechanics | structural mechanics | FEM | FEM | finite element | finite element

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.00J Introduction to Modeling and Simulation (MIT) 22.00J Introduction to Modeling and Simulation (MIT)

Description

This course surveys the basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. It covers techniques and software for statistical sampling, simulation, data analysis and visualization, and uses statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications are drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal footing with theory and experiment. A term project allows development of individual interests. Students are mentor This course surveys the basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. It covers techniques and software for statistical sampling, simulation, data analysis and visualization, and uses statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications are drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal footing with theory and experiment. A term project allows development of individual interests. Students are mentor

Subjects

computer modeling | computer modeling | discrete particle system | discrete particle system | continuum | continuum | continuum field | continuum field | statistical sampling | statistical sampling | data analysis | data analysis | visualization | visualization | quantum | quantum | quantum method | quantum method | chemical | chemical | molecular dynamics | molecular dynamics | Monte Carlo | Monte Carlo | mesoscale | mesoscale | continuum method | continuum method | computational physics | computational physics | chemistry | chemistry | mechanics | mechanics | materials science | materials science | biology; applied mathematics | biology; applied mathematics | fluid dynamics | fluid dynamics | heat | heat | fractal | fractal | evolution | evolution | melting | melting | gas | gas | structural mechanics | structural mechanics | FEM | FEM | finite element | finite element | biology | biology | applied mathematics | applied mathematics | 1.021 | 1.021 | 2.030 | 2.030 | 3.021 | 3.021 | 10.333 | 10.333 | 18.361 | 18.361 | HST.588 | HST.588 | 22.00 | 22.00

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is  a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas. This course is  a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

neutron distributions | neutron distributions | fission | fission | fusion | fusion | RST | RST | Particle simulation methods | Particle simulation methods | complex processes | complex processes | numerical solutions of equations | numerical solutions of equations | basic concepts | basic concepts | underlying scientific connections | underlying scientific connections | current research areas | current research areas | angular distributions | angular distributions | energy distributions | energy distributions | single collision | single collision | multiple collisions | multiple collisions | neutron interactions | neutron interactions | elastic scattering | elastic scattering | inelastic scattering | inelastic scattering | MCNP | MCNP | Monte Carlo | Monte Carlo | molecular dynamics | molecular dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.320 Atomistic Computer Modeling of Materials (MIT) 3.320 Atomistic Computer Modeling of Materials (MIT)

Description

Theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Energy models, from classical potentials to first-principles approaches. Density-functional theory and the total-energy pseudopotential method. Errors and accuracy of quantitative predictions. Thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations. Free energies and phase transitions. Fluctuations and transport properties. Coarse-graining approaches and mesoscale models. Theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Energy models, from classical potentials to first-principles approaches. Density-functional theory and the total-energy pseudopotential method. Errors and accuracy of quantitative predictions. Thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations. Free energies and phase transitions. Fluctuations and transport properties. Coarse-graining approaches and mesoscale models.

Subjects

atomistic computer simulations | atomistic computer simulations | Density-functional theory | Density-functional theory | total-energy pseudopotential method | total-energy pseudopotential method | Thermodynamic ensembles | Thermodynamic ensembles | Monte Carlo sampling | Monte Carlo sampling | molecular dynamics simulations | molecular dynamics simulations | Free energies | Free energies | phase transitions | phase transitions | Coarse-graining approaches | Coarse-graining approaches | mesoscale models | mesoscale models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.086 Numerical Computation for Mechanical Engineers (MIT) 2.086 Numerical Computation for Mechanical Engineers (MIT)

Description

Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming. Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.

Subjects

MATLAB | MATLAB | numerical analysis | numerical analysis | programming | programming | physical modeling | physical modeling | calculus | calculus | linear algebra | linear algebra | Monte Carlo Method | Monte Carlo Method | differential equations | differential equations | nonlinear systems | nonlinear systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.00SC Introduction to Computer Science and Programming (MIT) 6.00SC Introduction to Computer Science and Programming (MIT)

Description

Includes audio/video content: AV lectures. This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python programming language. Includes audio/video content: AV lectures. This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python programming language.

Subjects

Python programming | Python programming | algorithms | algorithms | dynamic programming | dynamic programming | object-oriented programming | object-oriented programming | debugging | debugging | problem solving | problem solving | recursion | recursion | iteration | iteration | search algorithms | search algorithms | program efficiency | program efficiency | order of growth | order of growth | memoization | memoization | hashing | hashing | object classes | object classes | inheritance | inheritance | Monte Carlo simulation | Monte Carlo simulation | curve fitting | curve fitting | optimization | optimization | clustering | clustering | queuing networks | queuing networks | data sampling | data sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT) 3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT)

Description

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app

Subjects

simulation | simulation | computer simulation | computer simulation | atomistic computer simulations | atomistic computer simulations | Density-functional theory | Density-functional theory | DFT | DFT | Hartree-Fock | Hartree-Fock | total-energy pseudopotential | total-energy pseudopotential | thermodynamics | thermodynamics | thermodynamic ensembles | thermodynamic ensembles | quantum mechanics | quantum mechanics | first-principles | first-principles | Monte Carlo sampling | Monte Carlo sampling | molecular dynamics | molecular dynamics | finite temperature | finite temperature | Free energies | Free energies | phase transitions | phase transitions | Coarse-graining | Coarse-graining | mesoscale model | mesoscale model | nanotube | nanotube | alloy | alloy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT) 1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | probability | statistics | statistics | events | events | random variables | random variables | univariate distributions | univariate distributions | multivariate distributions | multivariate distributions | uncertainty propagation | uncertainty propagation | Bernoulli trials | Bernoulli trials | Poisson processed | Poisson processed | conditional probability | conditional probability | Bayes rule | Bayes rule | random sampling | random sampling | point estimation | point estimation | interval estimation | interval estimation | hypothesis testing | hypothesis testing | analysis of variance | analysis of variance | linear regression | linear regression | computational analysis | computational analysis | data analysis | data analysis | environmental engineering | environmental engineering | applications | applications | MATLAB | MATLAB | numerical modeling | numerical modeling | probabilistic concepts | probabilistic concepts | statistical methods | statistical methods | field data | field data | laboratory data | laboratory data | numerical techniques | numerical techniques | Monte Carlo simulation | Monte Carlo simulation | variability | variability | sampling | sampling | data sets | data sets | computer | computer | uncertainty | uncertainty | interpretation | interpretation | quantitative data | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.58J Radiative Transfer (MIT) 2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing. This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subjects

thermal radiation | thermal radiation | heat transfer | heat transfer | photon transfer | photon transfer | quantum modeling | quantum modeling | materials | materials | electromagnetic | electromagnetic | absorption | absorption | emitting media | emitting media | scattering | scattering | laser | laser | imaging | imaging | infrared | infrared | global warming | global warming | semiconductor manufacturing | semiconductor manufacturing | combustion | combustion | furnace | furnace | high temperature processing | high temperature processing | Drude | Drude | Lorenz | Lorenz | gas | gas | dielectric | dielectric | Monte Carlo | Monte Carlo | simulation | simulation | solar energy | solar energy | solar power | solar power | solar cell | solar cell | 2.58 | 2.58 | 10.74 | 10.74

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.336J Introduction to Numerical Simulation (SMA 5211) (MIT) 6.336J Introduction to Numerical Simulation (SMA 5211) (MIT)

Description

6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation). 6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation).

Subjects

Numerical Simulation | Numerical Simulation | simulation | simulation | mathematics | mathematics | network problems | network problems | matrix solution | matrix solution | Newton method | Newton method | nonlinear problems | nonlinear problems | discretization methods | discretization methods | differential equations | differential equations | integral equations | integral equations | model-order reduction | model-order reduction | Monte Carlo | Monte Carlo | 6.336 | 6.336 | 2.096 | 2.096 | 16.910 | 16.910

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.450 Analytics of Finance (MIT) 15.450 Analytics of Finance (MIT)

Description

This course covers the key quantitative methods of finance: financial econometrics and statistical inference for financial applications; dynamic optimization; Monte Carlo simulation; stochastic (Itô) calculus. These techniques, along with their computer implementation, are covered in depth. Application areas include portfolio management, risk management, derivatives, and proprietary trading. This course covers the key quantitative methods of finance: financial econometrics and statistical inference for financial applications; dynamic optimization; Monte Carlo simulation; stochastic (Itô) calculus. These techniques, along with their computer implementation, are covered in depth. Application areas include portfolio management, risk management, derivatives, and proprietary trading.

Subjects

financial econometrics | financial econometrics | statistical inference | statistical inference | dynamic optimization | dynamic optimization | Monte Carlo simulation | Monte Carlo simulation | stochastic (Itô) calculus | stochastic (Itô) calculus | portfolio management | portfolio management | risk management | risk management | proprietary trading | proprietary trading | derivative pricing | derivative pricing | generalized method of moments | generalized method of moments | Black-Scholes model | Black-Scholes model

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.712 Tools for Analysis: Design for Real Estate and Infrastructure Development (MIT) ESD.712 Tools for Analysis: Design for Real Estate and Infrastructure Development (MIT)

Description

This course is an introduction to the analytical tools that support design and decision-making in real estate and infrastructure development. There is a particular focus on identifying and valuing sources of flexibility using “real options”, Monte-Carlo simulation, and other techniques from the field of engineering systems. This course integrates economic and engineering perspectives, and is suitable for students with various backgrounds. It serves to provide useful preparation for thesis work in the area. The course applies the approach to the design and phasing of a mega infrastructure real estate project. Note This MIT OpenCourseWare site is based, in part, on materials on Design for Real Estate and Infrastructure Development from Professor de Neufville's and Professor Gelt This course is an introduction to the analytical tools that support design and decision-making in real estate and infrastructure development. There is a particular focus on identifying and valuing sources of flexibility using “real options”, Monte-Carlo simulation, and other techniques from the field of engineering systems. This course integrates economic and engineering perspectives, and is suitable for students with various backgrounds. It serves to provide useful preparation for thesis work in the area. The course applies the approach to the design and phasing of a mega infrastructure real estate project. Note This MIT OpenCourseWare site is based, in part, on materials on Design for Real Estate and Infrastructure Development from Professor de Neufville's and Professor Gelt

Subjects

real estate | real estate | infrastructure analysis | infrastructure analysis | design structure matrix | design structure matrix | Monte Carlo simulation | Monte Carlo simulation | certainty equivalence valuation | certainty equivalence valuation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.086 Numerical Computation for Mechanical Engineers (MIT) 2.086 Numerical Computation for Mechanical Engineers (MIT)

Description

This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.

Subjects

MATLAB | MATLAB | numerical analysis | numerical analysis | programming | programming | physical modeling | physical modeling | calculus | calculus | linear algebra | linear algebra | Monte Carlo Method | Monte Carlo Method | differential equations | differential equations | nonlinear systems | nonlinear systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.086 Numerical Computation for Mechanical Engineers (MIT) 2.086 Numerical Computation for Mechanical Engineers (MIT)

Description

Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis.  Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. 

Subjects

MATLAB | MATLAB | numerical analysis | numerical analysis | programming | programming | physical modeling | physical modeling | calculus | calculus | linear algebra | linear algebra | Monte Carlo Method | Monte Carlo Method | differential equations | differential equations | nonlinear systems | nonlinear systems | variable types | variable types | data structure | data structure | flow control | flow control | probability | probability | statistics | statistics | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.086 Numerical Computation for Mechanical Engineers (MIT) 2.086 Numerical Computation for Mechanical Engineers (MIT)

Description

Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming. Includes audio/video content: AV special element video. This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.

Subjects

MATLAB | MATLAB | numerical analysis | numerical analysis | programming | programming | physical modeling | physical modeling | calculus | calculus | linear algebra | linear algebra | Monte Carlo Method | Monte Carlo Method | differential equations | differential equations | nonlinear systems | nonlinear systems | variable types | variable types | data structure | data structure | flow control | flow control | probability | probability | statistics | statistics | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT)

Description

This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | Neutron Slowing Down | Neutron Diffusion | Particle Simulation Methods | Basic Molecular Dynamics | Direct Simulation of Melting | Multiscale Materials Modeling | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT)

Description

This course is intended to introduce the student to the concepts and methods of transport theory needed in neutron science applications. This course is a foundational study of the effects of multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department. Stochastic and deterministic simulation techniques will be introduced to the students.

Subjects

Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | Neutron Slowing Down | Neutron Diffusion | Particle Simulation Methods | Basic Molecular Dynamics | Direct Simulation of Melting | Multiscale Materials Modeling | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.336J Introduction to Numerical Simulation (SMA 5211) (MIT)

Description

6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation).

Subjects

Numerical Simulation | simulation | mathematics | network problems | matrix solution | Newton method | nonlinear problems | discretization methods | differential equations | integral equations | model-order reduction | Monte Carlo | 6.336 | 2.096 | 16.910

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata