Searching for Navier-Stokes equation : 12 results found | RSS Feed for this search

2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows. Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.Subjects

fluid dynamics | | fluid dynamics | | Mass conservation | | Mass conservation | | Navier-Stokes equation | | Navier-Stokes equation | | viscous flows | | viscous flows | | dimensional analysis | | dimensional analysis | | Lubrication theory | | Lubrication theory | | Boundary layers | | Boundary layers | | vorticity theorems | | vorticity theorems | | Potential flow | | Potential flow | | turbulence | turbulenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site. Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | Matlab | modern computational techniques in chemical engineering | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | linear systems | scientific computing | scientific computing | solving sets of nonlinear algebraic equations | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | solving differential-algebraic (DAE) systems | probability theory | probability theory | use of probability theory in physical modeling | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of data estimation | statistical analysis of parameter estimation | statistical analysis of parameter estimation | finite difference techniques | finite difference techniques | finite element techniques | finite element techniques | converting partial differential equations | converting partial differential equations | Navier-Stokes equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods. This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.Subjects

advection equation | advection equation | heat equation | heat equation | wave equation | wave equation | Airy equation | Airy equation | convection-diffusion problems | convection-diffusion problems | KdV equation | KdV equation | hyperbolic conservation laws | hyperbolic conservation laws | Poisson equation | Poisson equation | Stokes problem | Stokes problem | Navier-Stokes equations | Navier-Stokes equations | interface problems | interface problems | consistency | consistency | stability | stability | convergence | convergence | Lax equivalence theorem | Lax equivalence theorem | error analysis | error analysis | Fourier approaches | Fourier approaches | staggered grids | staggered grids | shocks | shocks | front propagation | front propagation | preconditioning | preconditioning | multigrid | multigrid | Krylov spaces | Krylov spaces | saddle point problems | saddle point problems | finite differences | finite differences | finite volumes | finite volumes | finite elements | finite elements | ENO/WENO | ENO/WENO | spectral methods | spectral methods | projection approaches for incompressible ows | projection approaches for incompressible ows | level set methods | level set methods | particle methods | particle methods | direct and iterative methods | direct and iterative methodsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows. This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | Mass conservation | Navier-Stokes equation | viscous flows | dimensional analysis | Lubrication theory | boundary layer | lift | drag | vorticity theorems | Potential flow | turbulence | Bernoulli equation | potenial flow | inviscid flow | flight | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.Subjects

fluid dynamics | | Mass conservation | | Navier-Stokes equation | | viscous flows | | dimensional analysis | | Lubrication theory | | Boundary layers | | vorticity theorems | | Potential flow | | turbulenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.Subjects

fluid dynamics | Mass conservation | Navier-Stokes equation | viscous flows | dimensional analysis | Lubrication theory | boundary layer | lift | drag | vorticity theorems | Potential flow | turbulence | Bernoulli equation | potenial flow | inviscid flow | flight | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.336 Numerical Methods for Partial Differential Equations (MIT)

Description

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.Subjects

advection equation | heat equation | wave equation | Airy equation | convection-diffusion problems | KdV equation | hyperbolic conservation laws | Poisson equation | Stokes problem | Navier-Stokes equations | interface problems | consistency | stability | convergence | Lax equivalence theorem | error analysis | Fourier approaches | staggered grids | shocks | front propagation | preconditioning | multigrid | Krylov spaces | saddle point problems | finite differences | finite volumes | finite elements | ENO/WENO | spectral methods | projection approaches for incompressible ows | level set methods | particle methods | direct and iterative methodsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata