Searching for Navier-Stokes equation : 12 results found | RSS Feed for this search

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows. Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site. Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods. This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows. This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from