Searching for OS : 219 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.374 Analysis and Design of Digital Integrated Circuits (MIT) 6.374 Analysis and Design of Digital Integrated Circuits (MIT)

Description

6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs. 6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.

Subjects

digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | digital integrated circuit | device | device | circuit | circuit | digital | digital | MOS | MOS | Deep Sub-Micron effects | Deep Sub-Micron effects | circuit design | circuit design | logic | logic | interconnect models; parasitics | interconnect models; parasitics | device sizing | device sizing | timing | timing | clock skew | clock skew | jitter; clock distribution techniques | jitter; clock distribution techniques | memory architectures | memory architectures | circuits | circuits | sense amplifiers | sense amplifiers | SPICE | SPICE | HSPICE | HSPICE | Magic | Magic | Nanosim | Nanosim | Avanwaves | Avanwaves | device level optimization | device level optimization | interconnect models | interconnect models | parasitics | parasitics | jitter | jitter | clock distribution techniques | clock distribution techniques | CMOS inverter | CMOS inverter | combinational logic | combinational logic | sequential circuits | sequential circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | 6.152 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design | 6.720 | 6.720 | 3.43 | 3.43

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.810 Engineering Design and Rapid Prototyping (MIT) 16.810 Engineering Design and Rapid Prototyping (MIT)

Description

This course provides students with an opportunity to conceive, design and implement a product, using rapid protyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.AcknowledgmentsThis course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educationa This course provides students with an opportunity to conceive, design and implement a product, using rapid protyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline.AcknowledgmentsThis course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Class of '72 Fund for Educationa

Subjects

engineering design | engineering design | rapid prototyping | rapid prototyping | manufacturing | manufacturing | testing | testing | system components | system components | complex structural parts | complex structural parts | hand sketching | hand sketching | CAD | CAD | CAD modeling | CAD modeling | CAE | CAE | CAE analysis | CAE analysis | CAM programming | CAM programming | CNC | CNC | CNC machining | CNC machining | computer aided design | computer aided design | computer aided | computer aided | structual testing | structual testing | multiobjective design | multiobjective design | optimization | optimization | computational methods | computational methods | tools | tools | design process | design process | design competition | design competition | active learning | active learning | hands-on | hands-on | human creativity | human creativity | holistic | holistic | solidworks | solidworks | finite element | finite element | FEM | FEM | FEM analysis | FEM analysis | COSMOS | COSMOS | omax | omax | presentation | presentation | CDIO | CDIO

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.810 Engineering Design and Rapid Prototyping (MIT) 16.810 Engineering Design and Rapid Prototyping (MIT)

Description

Includes audio/video content: AV special element video. This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline. Acknowledgements This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching, Includes audio/video content: AV special element video. This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline. Acknowledgements This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teaching,

Subjects

engineering design | engineering design | rapid prototyping | rapid prototyping | manufacturing | manufacturing | testing | testing | system components | system components | complex structural parts | complex structural parts | hand sketching | hand sketching | CAD | CAD | CAD modeling | CAD modeling | CAE | CAE | CAE analysis | CAE analysis | CAM programming | CAM programming | CNC | CNC | CNC machining | CNC machining | computer aided design | computer aided design | computer aided | computer aided | structual testing | structual testing | multiobjective design | multiobjective design | optimization | optimization | computational methods | computational methods | tools | tools | design process | design process | design competition | design competition | active learning | active learning | hands-on | hands-on | human creativity | human creativity | holistic | holistic | solidworks | solidworks | finite element | finite element | FEM | FEM | FEM analysis | FEM analysis | COSMOS | COSMOS | omax | omax | presentation | presentation | CDIO | CDIO

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.810 Engineering Design and Rapid Prototyping (MIT) 16.810 Engineering Design and Rapid Prototyping (MIT)

Description

Includes audio/video content: AV special element video. This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline. Acknowledgements This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teachin Includes audio/video content: AV special element video. This course provides students with an opportunity to conceive, design and implement a product, using rapid prototyping methods and computer-aid tools. The first of two phases challenges each student team to meet a set of design requirements and constraints for a structural component. A course of iteration, fabrication, and validation completes this manual design cycle. During the second phase, each team conducts design optimization using structural analysis software, with their phase one prototype as a baseline. Acknowledgements This course is made possible thanks to a grant by the alumni sponsored Teaching and Education Enhancement Program (Class of '51 Fund for Excellence in Education, Class of '55 Fund for Excellence in Teachin

Subjects

engineering design | engineering design | rapid prototyping | rapid prototyping | manufacturing | manufacturing | testing | testing | system components | system components | complex structural parts | complex structural parts | hand sketching | hand sketching | CAD | CAD | CAD modeling | CAD modeling | CAE | CAE | CAE analysis | CAE analysis | CAM programming | CAM programming | CNC | CNC | CNC machining | CNC machining | computer aided design | computer aided design | computer aided | computer aided | structual testing | structual testing | multiobjective design | multiobjective design | optimization | optimization | computational methods | computational methods | tools | tools | design process | design process | design competition | design competition | active learning | active learning | hands-on | hands-on | human creativity | human creativity | holistic | holistic | solidworks | solidworks | finite element | finite element | FEM | FEM | FEM analysis | FEM analysis | COSMOS | COSMOS | omax | omax | presentation | presentation | CDIO | CDIO | structural testing | structural testing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.720J Integrated Microelectronic Devices (MIT) 6.720J Integrated Microelectronic Devices (MIT)

Description

6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course. 6.720 examines the physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics covered include: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS field-effect transistor, and bipolar junction transistor. The course emphasizes physical understanding of device operation through energy band diagrams and short-channel MOSFET device design. Issues in modern device scaling are also outlined. The course is worth 2 Engineering Design Points. Acknowledgments Prof. Jesús del Alamo would like to thank Prof. Harry Tuller for his support of and help in teaching the course.

Subjects

integrated microelectronic devices | integrated microelectronic devices | physics | physics | silicon | silicon | circuit | circuit | semiconductor | semiconductor | p-n junction | p-n junction | metal-oxide semiconductor structure | metal-oxide semiconductor structure | metal-semiconductor junction | metal-semiconductor junction | MOS field-effect transistor | MOS field-effect transistor | bipolar junction transistor | bipolar junction transistor | energy band diagram | energy band diagram | short-channel MOSFET | short-channel MOSFET | device characterization | device characterization | device design | device design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT) 6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic. | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.682 Prototyping Avionics (MIT) 16.682 Prototyping Avionics (MIT)

Description

In the past building prototypes of electronic components for new projects/products was limited to using protoboards and wirewrap. Manufacturing a printed-circuit-board was limited to final production, where mistakes in the implementation meant physically cutting traces on the board and adding wire jumpers - the final products would have these fixes on them! Today that is no longer the case, while you will still cut traces and use jumpers when debugging a board, manufacturing a new final version without the errors is a simple and relatively inexpensive task. For that matter, manufacturing a prototype printed circuit board which you know is likely to have errors but which will get the design substantially closer to the final product than a protoboard setup is not only possible, but desirable In the past building prototypes of electronic components for new projects/products was limited to using protoboards and wirewrap. Manufacturing a printed-circuit-board was limited to final production, where mistakes in the implementation meant physically cutting traces on the board and adding wire jumpers - the final products would have these fixes on them! Today that is no longer the case, while you will still cut traces and use jumpers when debugging a board, manufacturing a new final version without the errors is a simple and relatively inexpensive task. For that matter, manufacturing a prototype printed circuit board which you know is likely to have errors but which will get the design substantially closer to the final product than a protoboard setup is not only possible, but desirable

Subjects

engineering design | engineering design | rapid prototyping | rapid prototyping | manufacturing | manufacturing | testing | testing | system components | system components | complex structural parts | complex structural parts | hand sketching | hand sketching | CAD | CAD | CAD modeling | CAD modeling | CAE | CAE | CAE analysis | CAE analysis | CAM programming | CAM programming | CNC | CNC | CNC machining | CNC machining | computer aided design | computer aided design | computer aided | computer aided | structual testing | structual testing | multiobjective design | multiobjective design | optimization | optimization | computational methods | computational methods | tools | tools | design process | design process | design competition | design competition | active learning | active learning | hands-on | hands-on | human creativity | human creativity | holistic | holistic | solidworks | solidworks | finite element | finite element | FEM | FEM | FEM analysis | FEM analysis | COSMOS | COSMOS | omax | omax | presentation | presentation | CDIO | CDIO

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.892J Space System Architecture and Design (MIT) 16.892J Space System Architecture and Design (MIT)

Description

Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues. Space System Architecture and Design incorporates lectures, readings and discussion on topics in the architecting of space systems. The class reviews existing space system architectures and the classical methods of designing them. Sessions focus on multi-attribute utility theory as a new design paradigm for space systems, when combined with integrated concurrent engineering and efficient searches of large architectural tradespaces. Designing for flexibility and uncertainty is considered, as are policy and product development issues.

Subjects

space system | space system | space system architecture | space system architecture | space architecting | space architecting | uncertainties | uncertainties | space policy | space policy | robustness | robustness | flexibility | flexibility | optimality | optimality | tradespace analysis | tradespace analysis | quality function deployment | quality function deployment | multi-attribute utility theory | multi-attribute utility theory | n-squared | n-squared | design structure matrix | design structure matrix | multi-attribution tradespace exploration | multi-attribution tradespace exploration | MATE | MATE | MATE-CON | MATE-CON | satellite | satellite | classes of space system | classes of space system | XTOS | XTOS | spacetug | spacetug | GINA | GINA | pareto fronts | pareto fronts | engineering design process | engineering design process | optimization methods | optimization methods | genetic algorithms | genetic algorithms | simulated annealing | simulated annealing | MMDOSA | MMDOSA | distributed space systems design optimization | distributed space systems design optimization | clarity test | clarity test | taxonomy of uncertainty | taxonomy of uncertainty | treatment of uncertainty | treatment of uncertainty | irreducible uncertainty | irreducible uncertainty | portfolio theory | portfolio theory | portfolio applications | portfolio applications | taxonomy of flexibility | taxonomy of flexibility | on-orbit servicing | on-orbit servicing | US national space policy | US national space policy | space policy heuristics | space policy heuristics | policy architectures | policy architectures | 16.892 | 16.892 | ESD.353 | ESD.353

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESTRUCTURAS MIXTAS Y DE MADERA (2011)

Description

Al finalizar la asignatura, el alumno debe ser capaz de organizar la estructura, realizar el cálculo de las solicitaciones a las que se ve sometido un sistema estructural y determinar si cumple los criterios de resistencia, rigidez y estabilidad tanto para secciones mixtas hormigón-acero como de madera establecidos a lo largo del curso para el caso de las estructuras de Edificación. Se presentará trabajo final de curso individual.

Subjects

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | acero | arriostramientos | estructuras | ón | ligeras | maderas

License

http://creativecommons.org/licenses/by-nc-nd/2.5/es/

Site sourced from

http://www.upv.es/pls/oalu/sic_rss.rss_ocw

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.374 Analysis and Design of Digital Integrated Circuits (MIT)

Description

6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.

Subjects

digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | device | circuit | digital | MOS | Deep Sub-Micron effects | circuit design | logic | interconnect models; parasitics | device sizing | timing | clock skew | jitter; clock distribution techniques | memory architectures | circuits | sense amplifiers | SPICE | HSPICE | Magic | Nanosim | Avanwaves | device level optimization | interconnect models | parasitics | jitter | clock distribution techniques | CMOS inverter | combinational logic | sequential circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.374 Analysis and Design of Digital Integrated Circuits (MIT)

Description

6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.

Subjects

digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | device | circuit | digital | MOS | Deep Sub-Micron effects | circuit design | logic | interconnect models; parasitics | device sizing | timing | clock skew | jitter; clock distribution techniques | memory architectures | circuits | sense amplifiers | SPICE | HSPICE | Magic | Nanosim | Avanwaves | device level optimization | interconnect models | parasitics | jitter | clock distribution techniques | CMOS inverter | combinational logic | sequential circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.374 Analysis and Design of Digital Integrated Circuits (MIT)

Description

6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.

Subjects

digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | device | circuit | digital | MOS | Deep Sub-Micron effects | circuit design | logic | interconnect models; parasitics | device sizing | timing | clock skew | jitter; clock distribution techniques | memory architectures | circuits | sense amplifiers | SPICE | HSPICE | Magic | Nanosim | Avanwaves | device level optimization | interconnect models | parasitics | jitter | clock distribution techniques | CMOS inverter | combinational logic | sequential circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ÓN DE MATERIALES (2012)

Description

La asignatura aporta los conocimientos básicos sobre principios fundamentales, técnicas operatorias y aplicación de las principales técnicas de caracterización de materiales utilizadas en investigación científica y en la industria. Esta asignatura contribuye en el curriculo formativo del alumno desarrollando los conocimientos básicos para identificar y cuantificar las propiedades de los materiales en sus diferentes entornos de aplicación. Los objetivos docentes son: - Conocimiento de las técnicas relevantes en investigación sobre materiales. - Desarrollo de criterios de trabajo con las técnicas en función de la aplicación. - Selección de las técnicas y condiciones de muestra con preparación de las mismas. - Preparación de planes de análisis de materiales para su identif

Subjects

Z-POSGRADO | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | materials characterization | materials properties | materials science | microscopy

License

http://creativecommons.org/licenses/by-nc-nd/2.5/es/

Site sourced from

http://www.upv.es/pls/oalu/sic_rss.rss_ocw

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ÓN DE TECNOLOGÍA DE COMPUTADORES (2009)

Description

En esta asignatura se estudian los dispositivos semiconductores básicos y sus circuitos de aplicación elementales, prestando especial interés a su funcionamiento en conmutación. Con ello se pretende que el alumno comprenda cual es la tecnología que sirve de base a los sistemas informáticos, conozca sus características principales y sea consciente de sus limitaciones.

Subjects

ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | Bipolar | CMOS | Diodo | MOSFET | ógicas | transistor

License

http://creativecommons.org/licenses/by-nc-nd/2.5/es/

Site sourced from

http://www.upv.es/pls/oalu/sic_rss.rss_ocw

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias

Description

En esta asignatura se desarrolla el estudio de la teoría y práctica de Ecuaciones Diferenciales Ordinarias, siendo los principales temas tratados: métodos elementales de resolución de ecuaciones de primer orden, sistemas lineales de ecuaciones y ecuaciones de orden superior, transformada de Laplace y diagramas de fase. En esta asignatura se desarrolla el estudio de la teoría y práctica de Ecuaciones Diferenciales Ordinarias, siendo los principales temas tratados: métodos elementales de resolución de ecuaciones de primer orden, sistemas lineales de ecuaciones y ecuaciones de orden superior, transformada de Laplace y diagramas de fase.

Subjects

ía de Telecomunicación | ía de Telecomunicación | ática Aplicada | ática Aplicada | 2009 | 2009 | EDOS | EDOS

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.301 Solid-State Circuits (MIT) 6.301 Solid-State Circuits (MIT)

Description

This course covers analog circuit analysis and design, focusing on the tools and methods necessary for the creative design of useful circuits using active devices. The class stresses insight and intuition, applied to the design of transistor circuits and the estimation of their performance. The course concentrates on circuits using the bipolar junction transistor, but the techniques that are studied can be equally applied to circuits using JFETs, MOSFETs, MESFETs, future exotic devices, or even vacuum tubes. This course covers analog circuit analysis and design, focusing on the tools and methods necessary for the creative design of useful circuits using active devices. The class stresses insight and intuition, applied to the design of transistor circuits and the estimation of their performance. The course concentrates on circuits using the bipolar junction transistor, but the techniques that are studied can be equally applied to circuits using JFETs, MOSFETs, MESFETs, future exotic devices, or even vacuum tubes.

Subjects

solid state circuits | solid state circuits | analog | analog | circuit | circuit | transistor | transistor | bipolar junction transistor | bipolar junction transistor | JFET | JFET | MOSFET | MOSFET | MESFET | MESFET | vacuum tubes | vacuum tubes | single-transistor common-emitter amplifier | single-transistor common-emitter amplifier | op amps | op amps | multipliers | multipliers | references | references | high speed logic | high speed logic | high-frequency analysis | high-frequency analysis | open-circuit time constants | open-circuit time constants | transimpedance amps | transimpedance amps | translinear circuits | translinear circuits | bandgap references | bandgap references | charge control model | charge control model

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.004 Computation Structures (MIT) 6.004 Computation Structures (MIT)

Description

6.004 offers an introduction to the engineering of digital systems. Starting with MOS transistors, the course develops a series of building blocks - logic gates, combinational and sequential circuits, finite-state machines, computers and finally complete systems. Both hardware and software mechanisms are explored through a series of design examples.6.004 is required material for any EECS undergraduate who wants to understand (and ultimately design) digital systems. A good grasp of the material is essential for later courses in digital design, computer architecture and systems. Before taking 6.004, students should feel comfortable using computers; a rudimentary knowledge of programming language concepts (6.001) and electrical fundamentals (6.002) is assumed. 6.004 offers an introduction to the engineering of digital systems. Starting with MOS transistors, the course develops a series of building blocks - logic gates, combinational and sequential circuits, finite-state machines, computers and finally complete systems. Both hardware and software mechanisms are explored through a series of design examples.6.004 is required material for any EECS undergraduate who wants to understand (and ultimately design) digital systems. A good grasp of the material is essential for later courses in digital design, computer architecture and systems. Before taking 6.004, students should feel comfortable using computers; a rudimentary knowledge of programming language concepts (6.001) and electrical fundamentals (6.002) is assumed.

Subjects

computation | computation | computation structure | computation structure | primitives | primitives | gates | gates | nstructions | nstructions | procedures | procedures | processes | processes | concurrency | concurrency | instruction set design | instruction set design | software structure | software structure | digital system | digital system | MOS transistor | MOS transistor | logic gate | logic gate | combinational circuit | combinational circuit | sequential circuit | | sequential circuit | | finite-state machines | finite-state machines | sequential circuit | sequential circuit | computer architecture | computer architecture | programming | programming | RISC processor | RISC processor | instructions | instructions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points.

Subjects

microelectronic device | microelectronic device | circuit | circuit | design | design | physical electronics | physical electronics | semiconductor junction | semiconductor junction | MOS device | MOS device | electrical behavior | electrical behavior | incremental technique | incremental technique | large-signal technique | large-signal technique | bipolar transistor | bipolar transistor | field effect transistor | field effect transistor | digital circuit | digital circuit | single-ended amplifier | single-ended amplifier | differential linear amplifier | differential linear amplifier | integrated circuit | integrated circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req 6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming | computer engineering | computer engineering | kernal mode | kernal mode | user mode | user mode | concurrent activities | concurrent activities | interfaces | interfaces | software/hardware interface | software/hardware interface | boot loaders | boot loaders | memory management | memory management | processes switching | processes switching | fork | fork | IPC | IPC | file systems | file systems | shells | shells | Exec | Exec

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points.

Subjects

microelectronic device | microelectronic device | circuit | circuit | design | design | physical electronics | physical electronics | semiconductor junction | semiconductor junction | MOS device | MOS device | electrical behavior | electrical behavior | incremental technique | incremental technique | large-signal technique | large-signal technique | bipolar transistor | bipolar transistor | field effect transistor | field effect transistor | digital circuit | digital circuit | single-ended amplifier | single-ended amplifier | differential linear amplifier | differential linear amplifier | integrated circuit | integrated circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata