Searching for aerospace engineering : 9 results found | RSS Feed for this search

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.Technical RequirementsMATLAB® software is required to run the .m and .mat files found on this course site.MATLAB® is a trademark of The MathWorks, Inc. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.Technical RequirementsMATLAB® software is required to run the .m and .mat files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.00 Introduction to Aerospace Engineering and Design (MIT) 16.00 Introduction to Aerospace Engineering and Design (MIT)

Description

The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien

Subjects

aerospace engineering | | aerospace engineering | | aerospace design | | aerospace design | | aeronautics | | aeronautics | | astronautics | | astronautics | | lighter-than-air (LTA) vehicle design | | lighter-than-air (LTA) vehicle design | | physics | | physics | | mathematics | | mathematics | | chemistry | chemistry | journey to mars | journey to mars | challenger | challenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.Technical RequirementsMATLAB® software is required to run the .m and .mat files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

numerical integration | ODEs | ordinary differential equations | finite difference | finite volume | finite element | discretization | PDEs | partial differential equations | numerical linear algebra | probabilistic methods | optimization | omputational methods | aerospace engineering | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.00 Introduction to Aerospace Engineering and Design (MIT)

Description

The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien

Subjects

aerospace engineering | | aerospace design | | aeronautics | | astronautics | | lighter-than-air (LTA) vehicle design | | physics | | mathematics | | chemistry | journey to mars | challenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.90 Computational Methods in Aerospace Engineering (MIT)

Description

This course provides an introduction to numerical methods and computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques covered include numerical integration of systems of ordinary differential equations; numerical discretization of partial differential equations; and probabilistic methods for quantifying the impact of variability. Specific emphasis is given to finite volume methods in fluid mechanics, and finite element methods in structural mechanics.Acknowledgement: Prof. David Darmofal taught this course in prior years, and created some of the materials found in this OCW site.

Subjects

numerical integration | ODEs | ordinary differential equations | finite difference | finite volume | finite element | discretization | PDEs | partial differential equations | numerical linear algebra | probabilistic methods | optimization | computational methods | aerospace engineering | Monte Carlo | Fourier stability analysis | Matrix stability analysis | Runge-Kutta | convergence | accuracy | stiffness | weighted residual | statistical sampling | sensitivity analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | ODEs | ordinary differential equations | finite difference | finite volume | finite element | discretization | PDEs | partial differential equations | numerical linear algebra | probabilistic methods | optimization | omputational methods | aerospace engineering | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata