Searching for amplification : 18 results found | RSS Feed for this search

14.462 Advanced Macroeconomics II (MIT) 14.462 Advanced Macroeconomics II (MIT)

Description

14.462 is the second semester of the second-year Ph.D. macroeconomics sequence. The course is intended to introduce the students, not only to particular areas of current research, but also to some very useful analytical tools. It covers a selection of topics that varies from year to year. Recent topics include: Growth and Fluctuations Heterogeneity and Incomplete Markets Optimal Fiscal Policy Time Inconsistency Reputation Coordination Games and Macroeconomic Complementarities Information 14.462 is the second semester of the second-year Ph.D. macroeconomics sequence. The course is intended to introduce the students, not only to particular areas of current research, but also to some very useful analytical tools. It covers a selection of topics that varies from year to year. Recent topics include: Growth and Fluctuations Heterogeneity and Incomplete Markets Optimal Fiscal Policy Time Inconsistency Reputation Coordination Games and Macroeconomic Complementarities InformationSubjects

macroeconomics research; analytical tools; analysis; endogenous growth; coordintation; incomplete markets; technolgy; distribution; employment; intellectual property rights; bounded rationality; demographics; complementarities; amplification; recursive equilibria; uncertainty; morris; shin; global games; policy; price; aggregation; social learning; dynamic adjustment; business cycle; heterogeneous agents; savings; utility; aiyagari; steady state; krusell; smith; idiosyncratic investment risk | macroeconomics research; analytical tools; analysis; endogenous growth; coordintation; incomplete markets; technolgy; distribution; employment; intellectual property rights; bounded rationality; demographics; complementarities; amplification; recursive equilibria; uncertainty; morris; shin; global games; policy; price; aggregation; social learning; dynamic adjustment; business cycle; heterogeneous agents; savings; utility; aiyagari; steady state; krusell; smith; idiosyncratic investment risk | macroeconomics research | macroeconomics research | analytical tools | analytical tools | analysis | analysis | endogenous growth | endogenous growth | coordintation | coordintation | incomplete markets | incomplete markets | technolgy | technolgy | distribution | distribution | employment | employment | intellectual property rights | intellectual property rights | bounded rationality | bounded rationality | demographics | demographics | complementarities | complementarities | amplification | amplification | recursive equilibria | recursive equilibria | uncertainty | uncertainty | morris | morris | shin | shin | global games | global games | policy | policy | price | price | aggregation | aggregation | social learning | social learning | dynamic adjustment | dynamic adjustment | business cycle | business cycle | heterogeneous agents | heterogeneous agents | savings | savings | utility | utility | aiyagari | aiyagari | steady state | steady state | krusell | krusell | smith | smith | idiosyncratic investment risk | idiosyncratic investment risk | growth | growth | fluctuations | fluctuations | heterogeneity | heterogeneity | optimal fiscal policy | optimal fiscal policy | time inconsistency | time inconsistency | reputation | reputation | information | information | coordination games | coordination gamesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataElectronic Components and Circuits Electronic Components and Circuits

Description

Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications. Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications.Subjects

polarization | polarization | Single-stage amplification circuits | Single-stage amplification circuits | electronic circuits analysis | electronic circuits analysis | semiconductor devices | semiconductor devices | Frequency response of transistor amplifier | Frequency response of transistor amplifier | electronic circuits | electronic circuits | ía Electrónica | ía Electrónica | Multi-stage amplifiers | Multi-stage amplifiers | electronic components | electronic components | Electronic Amplification | Electronic Amplification | Operational Amplifier | Operational Amplifier | 2010 | 2010 | ía de Sistemas Audiovisuales | ía de Sistemas AudiovisualesLicense

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&a This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&aSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | coherent states | and squeezed states | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | quantum teleportation | quantum teleportationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.897 Selected Topics in Cryptography (MIT) 6.897 Selected Topics in Cryptography (MIT)

Description

This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given. This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given.Subjects

cryptography | cryptography | cryptanalysis | cryptanalysis | cryptographic protocols | cryptographic protocols | general security definitions | general security definitions | composition theorems | composition theorems | protocols | protocols | commitments | commitments | key exchange | key exchange | general multi-party computation | general multi-party computation | composable notions of security for PK encryption and signatures | composable notions of security for PK encryption and signatures | theory of extractors | theory of extractors | privacy amplification | privacy amplification | special-purpose factoring devices | special-purpose factoring devices | algorithms | algorithms | concrete security arguments | concrete security arguments | differential cryptanalysis | differential cryptanalysis | public-key infrastructures | public-key infrastructures | electronic voting | electronic votingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT) 6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms. This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | Randomized Algorithms | algorithms | algorithms | efficient in time and space | efficient in time and space | randomization | randomization | computational problems | computational problems | data structures | data structures | graph algorithms | graph algorithms | optimization | optimization | geometry | geometry | Markov chains | Markov chains | sampling | sampling | estimation | estimation | geometric algorithms | geometric algorithms | parallel and distributed algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and ditributed algorithm | parallel and distributed algorithm | parallel and distributed algorithm | random sampling | random sampling | random selection of witnesses | random selection of witnesses | symmetry breaking | symmetry breaking | randomized computational models | randomized computational models | hash tables | hash tables | skip lists | skip lists | minimum spanning trees | minimum spanning trees | shortest paths | shortest paths | minimum cuts | minimum cuts | convex hulls | convex hulls | linear programming | linear programming | fixed dimension | fixed dimension | arbitrary dimension | arbitrary dimension | approximate counting | approximate counting | parallel algorithms | parallel algorithms | online algorithms | online algorithms | derandomization techniques | derandomization techniques | probabilistic analysis | probabilistic analysis | computational number theory | computational number theory | simplicity | simplicity | speed | speed | design | design | basic probability theory | basic probability theory | application | application | randomized complexity classes | randomized complexity classes | game-theoretic techniques | game-theoretic techniques | Chebyshev | Chebyshev | moment inequalities | moment inequalities | limited independence | limited independence | coupon collection | coupon collection | occupancy problems | occupancy problems | tail inequalities | tail inequalities | Chernoff bound | Chernoff bound | conditional expectation | conditional expectation | probabilistic method | probabilistic method | random walks | random walks | algebraic techniques | algebraic techniques | probability amplification | probability amplification | sorting | sorting | searching | searching | combinatorial optimization | combinatorial optimization | approximation | approximation | counting problems | counting problems | distributed algorithms | distributed algorithms | 6.856 | 6.856 | 18.416 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataHST.720 Physiology of the Ear (MIT) HST.720 Physiology of the Ear (MIT)

Description

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders. Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.Subjects

cochlear physiology | cochlear physiology | cochlea | cochlea | ear | ear | ear canal | ear canal | inner ear | inner ear | middle ear | middle ear | outer ear | outer ear | auditory pathway | auditory pathway | auditory nerve | auditory nerve | auditory brainstem | auditory brainstem | acoustic coupling | acoustic coupling | auditory periphery | auditory periphery | acoustic signals | acoustic signals | sound transmission | sound transmission | cochlear amplification | cochlear amplification | synaptic transmission | synaptic transmission | hair cell transduction | hair cell transduction | efferent feedback control | efferent feedback control | hearing disorders | hearing disorders | hearing | hearing | cochlear mechanics | cochlear mechanics | basilar membrane | basilar membrane | auditory nerve fiber response | auditory nerve fiber response | otoacoustic emissions | otoacoustic emissions | outer hair cell | outer hair cellLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.462 Advanced Macroeconomics II (MIT)

Description

14.462 is the second semester of the second-year Ph.D. macroeconomics sequence. The course is intended to introduce the students, not only to particular areas of current research, but also to some very useful analytical tools. It covers a selection of topics that varies from year to year. Recent topics include: Growth and Fluctuations Heterogeneity and Incomplete Markets Optimal Fiscal Policy Time Inconsistency Reputation Coordination Games and Macroeconomic Complementarities InformationSubjects

macroeconomics research; analytical tools; analysis; endogenous growth; coordintation; incomplete markets; technolgy; distribution; employment; intellectual property rights; bounded rationality; demographics; complementarities; amplification; recursive equilibria; uncertainty; morris; shin; global games; policy; price; aggregation; social learning; dynamic adjustment; business cycle; heterogeneous agents; savings; utility; aiyagari; steady state; krusell; smith; idiosyncratic investment risk | macroeconomics research | analytical tools | analysis | endogenous growth | coordintation | incomplete markets | technolgy | distribution | employment | intellectual property rights | bounded rationality | demographics | complementarities | amplification | recursive equilibria | uncertainty | morris | shin | global games | policy | price | aggregation | social learning | dynamic adjustment | business cycle | heterogeneous agents | savings | utility | aiyagari | steady state | krusell | smith | idiosyncratic investment risk | growth | fluctuations | heterogeneity | optimal fiscal policy | time inconsistency | reputation | information | coordination gamesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | viscous fluids | viscosity | fundamental theorem of kinematics | convection | vorticity | strain | Eulerian description | Lagrangian description | conservation of mass | continuity | conservation of momentum | stress tensor | newtonian fluid | circulation | Navier-Stokes | similarity | dimensional analysis | thin shear later approximation | TSL coordinates | boundary conditions | shear later categories | local scaling | Falkner-Skan flows | solution techniques | finite difference methods | Newton-Raphson | integral momentum equation | Thwaites method | integral kinetic energy equation | dissipation | asymptotic perturbation | displacement body | transpiration | form drag | stall | interacting boundary layer theory | stability | transition | small-perturbation | Orr-Somemerfeld | temporal amplification | spatial amplification | Reynolds | Prandtl | turbulent boundary layer | wake | wall layers | inner variables | outer variables | roughness | Clauser | Dissipation formula | integral closer | turbulence modeling | transport models | turbulent shear layers | compressible then shear layers | compressibility | temperature profile | heat flux | 3D boundary layers | crossflow | lateral dilation | 3D separation | constant-crossflow | 3D transition | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&aSubjects

Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | quantum teleportationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.897 Selected Topics in Cryptography (MIT)

Description

This course covers a number of advanced "selected topics" in the field of cryptography. The first part of the course tackles the foundational question of how to define security of cryptographic protocols in a way that is appropriate for modern computer networks, and how to construct protocols that satisfy these security definitions. For this purpose, the framework of "universally composable security" is studied and used. The second part of the course concentrates on the many challenges involved in building secure electronic voting systems, from both theoretical and practical points of view. In the third part, an introduction to cryptographic constructions based on bilinear pairings is given.Subjects

cryptography | cryptanalysis | cryptographic protocols | general security definitions | composition theorems | protocols | commitments | key exchange | general multi-party computation | composable notions of security for PK encryption and signatures | theory of extractors | privacy amplification | special-purpose factoring devices | algorithms | concrete security arguments | differential cryptanalysis | public-key infrastructures | electronic votingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataHST.720 Physiology of the Ear (MIT)

Description

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.Subjects

cochlear physiology | cochlea | ear | ear canal | inner ear | middle ear | outer ear | auditory pathway | auditory nerve | auditory brainstem | acoustic coupling | auditory periphery | acoustic signals | sound transmission | cochlear amplification | synaptic transmission | hair cell transduction | efferent feedback control | hearing disorders | hearing | cochlear mechanics | basilar membrane | auditory nerve fiber response | otoacoustic emissions | outer hair cellLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | algorithms | efficient in time and space | randomization | computational problems | data structures | graph algorithms | optimization | geometry | Markov chains | sampling | estimation | geometric algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and distributed algorithm | random sampling | random selection of witnesses | symmetry breaking | randomized computational models | hash tables | skip lists | minimum spanning trees | shortest paths | minimum cuts | convex hulls | linear programming | fixed dimension | arbitrary dimension | approximate counting | parallel algorithms | online algorithms | derandomization techniques | probabilistic analysis | computational number theory | simplicity | speed | design | basic probability theory | application | randomized complexity classes | game-theoretic techniques | Chebyshev | moment inequalities | limited independence | coupon collection | occupancy problems | tail inequalities | Chernoff bound | conditional expectation | probabilistic method | random walks | algebraic techniques | probability amplification | sorting | searching | combinatorial optimization | approximation | counting problems | distributed algorithms | 6.856 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.405J Advanced Complexity Theory (MIT)

Description

This graduate-level course focuses on current research topics in computational complexity theory. Topics include: Nondeterministic, alternating, probabilistic, and parallel computation models; Boolean circuits; Complexity classes and complete sets; The polynomial-time hierarchy; Interactive proof systems; Relativization; Definitions of randomness; Pseudo-randomness and derandomizations;Interactive proof systems and probabilistically checkable proofs.Subjects

18.405 | 6.841 | Polynomial hierarchy | time-space lower bounds | approximate counting | ?s Theorem | Relativization | Baker-Gill-Solovay | switching lemma | Razborov-Smolensky | NEXP vs. ACC0 | Communication complexity | PCP theorem | Hadamard code | Gap amplification | Natural proofsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT)

Description

6.453 Quantum Optical Communication is one of a collection of MIT classes that deals with aspects of an emerging field known as quantum information science. This course covers Quantum Optics, Single-Mode and Two-Mode Quantum Systems, Multi-Mode Quantum Systems, Nonlinear Optics, and Quantum System Theory.Subjects

Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | Prepresentation and classical fields | Linear loss and linear amplification: Commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: Direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: Phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | and quantum teleportationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects

Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | and quantum teleportation.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata