Searching for analytical chemistry : 10 results found | RSS Feed for this search
6.S079 Nanomaker (MIT) 6.S079 Nanomaker (MIT)
Description
Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an electiveSubjects
clean energy | clean energy | energy sources | energy sources | energy storage | energy storage | energy consumption | energy consumption | photovoltaic | photovoltaic | piezoelectric | piezoelectric | thermoelectric | thermoelectric | LED | LED | light emitting diode | light emitting diode | organic LED | organic LED | analytical biology | analytical biology | analytical chemistry | analytical chemistry | microfluidics | microfluidics | spectrometer | spectrometer | energy efficiency | energy efficiencyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
Wales undergraduate level and as a CPD training resourceSubjects
ukoer | sfsoer | oer | open educational resources | metadata | analytical science | cpd training resource | analytical chemistry | measurement science | analytical process model | skills for analytical science | skills for analytical chemistry | analytical sample preparation | separation and concentration of analytes | units of measurement | volumetric techniques | gravimetric techniques | calibration methods | standard-addition | method of internal-standards | statistical analysis of data | measurement uncertainty | chromatographic methods | thin layer chromatography | gc | gas chromatography | hplc | high-performance liquid chromatography | capillary electrophoresis | potentiometry | ion-selective electrodes | amperometry | coulometry | plated film thickness | electromagnetic spectrum | electronic transitions | vibrational energy | comparison of spectroscopic techniques | fluorescence spectroscopy | mid infra-red spectroscopy | near infra-red spectroscopy | aas | atomic absorption spectroscopy | atomic emission spectroscopy | inductively coupled plasme emission spectroscopy | icpms | icpes | atomic fluorescence spectroscopy | comparison of elemental analysis techniques | principles of mass spectroscopy | electron impact mass spectroscopy | chemical ionisation mass spectroscopy | quadrupole mass spectroscopy | time-of-flight mass analysers | ion-trap mass analysers | off-line sampling systems | at-line sampling systems | on-line sampling systems | in-line sampling systems | performance characteristics of analytical techniques | flow injection analysis | fia | process gc | process ir | process ms | process uv/visible | quality management | quality assurance | qa | vam principles | quality control | qc | analytical method validation | analytical method performance characteristics | sampling of solids | liquids and gases | measurement of ph | karl fischer titration | uv/visible spectroscopy | beer's law | beer-lambert law | deviations from beer's law | mid ir spectroscopy | near ir spectroscopy | raman spectroscopy | fourier transform spectroscopies | x-ray methods | x-ray fluorescence spectroscopy | gc-ms | lc-ms | Physical sciences | F000License
Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataAnalytical Science - modified Chapter 9
Description
An updated version of Chapter 9 from the Analytical Science course, also on JorumOpen (http://open.jorum.ac.uk/xmlui/handle/123456789/2964)Subjects
ukoer | sfsoer | oer | open educational resources | analytical science | cpd training resource | analytical chemistry | measurement science | analytical process model | skills for analytical chemistry | skills for analytical science | Physical sciences | F000License
Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataForensic Analysis - Pre-Laboratory Exercises and Laboratory Manual
Description
Prelaboratory exercises and laboratory practicals in Forensic AnalysisSubjects
sfsoer | ukoer | forensic analysis | analytical chemistry | dna | drugs | fibre | fire | Physical sciences | F000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataIntroduction to Analytical Chemistry
Description
A general introduction to analytical chemistry with a special focus upon the analytical process, quality assurance, and guidance on solution preparation including volumetric and concentration calculations. It also includes a bibliography of useful texts for the analytical chemist.License
Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataChemistry in Action: Laboratory Manual
Description
Laboratory manual describing 11 x 3 hour experiments in the area of forensic chemical analysis. Students are presented with a case scenario of a suspicious death, which they must investigate via a series of laboratory experiments. Students would normally work in groups and co-ordinate their results in a follow-up workshop.Subjects
ukoer | sfsoer | analytical chemistry | analytical science | forensic science | forensic analysis | Physical sciences | F000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataAnalytical Chemistry Techniques Manual
Description
A set of four separate guides which provide introductions to the principles and practical application of different analytical chemistry techniques, illustrated with simple diagrams and photographs of equipment: (1) introduction to analytical chemistry, focusing on the analytical process, quality assurance and general laboratory techniques e.g. solution preparation; (2) introduction to molecular spectroscopy, including UV-Vis, fluorescence, IR, MS and NMR spectroscopy; (3) introduction to chromatography, including TLC, GC, HPLC and ion chromatography; (4) introduction to atomic spectrometry, including ICP-AES, ICP-MS, XRF and AAS. Each guide is also available for separate download as a pdf file.Subjects
ukoer | sfsoer | analytical chemistry | analytical science | chromatography | spectroscopy | spectrometry | Physical sciences | F000License
Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataAnalytical chemistry scenarios
Description
Pre-lab exercises, pre-lab tests, lab scripts and post-lab questions for two scenarios in analytical chemistry ("Is it the Real Thing?" and "Chemistry at the Night Club"). Written for second year undergraduste module for chemistry and bioscience students. Could be used from first year undergraduate to Masters level with modifications. Stored here as a self-extracting .rar file - save it to your computer, then double click on it to extract files. Documents are in .rtf format for easy modification.Subjects
ukoer | sfsoer | analytical chemistry | analytical science | forensic science | laboratory practical | drug analysis | Physical sciences | F000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative and quantitative. This discipline is also concerned with the chemical composition of samples. In the field, analytical chemistry is applied when detecting the presence and determining the quantities of chemical compounds, such as lead in water samples or arsenic in tissue samples. It also encompasses many different spectrochemical techniques, all of which are used under various experimental conditions. This branch of chemistry teaches the general theories behind the use of each instrument as well analysis of experimental data. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Chemistry 108)Subjects
analytical chemistry | stoichiometry | molarity | molality | calibration | linear regression | titration | spectrochemical | spectroscopy | uv | ir | resonance | chromatography | electrophoresis | electrochemistry | Physical sciences | F000License
Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective subject in MIT’s undergraduate Energy Studies MinSubjects
clean energy | energy sources | energy storage | energy consumption | photovoltaic | piezoelectric | thermoelectric | LED | light emitting diode | organic LED | analytical biology | analytical chemistry | microfluidics | spectrometer | energy efficiencyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata