Searching for auditory brainstem : 4 results found | RSS Feed for this search

HST.722J Brain Mechanisms for Hearing and Speech (MIT) HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds. An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | HST.722 | 9.044 | 9.044 | separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering | hearing | hearing | speech | speech | auditory brainstem | auditory brainstem | auditory cortex | auditory cortex | auditory reflexes | auditory reflexes | descending systems | descending systems | human auditory system | human auditory system | speech motor control | speech motor control | auditory learning | auditory learning | cortical representation | cortical representation | dorsal cochlear nucleus | dorsal cochlear nucleus | neural coding | neural coding | thalamo-cortical organization | thalamo-cortical organization | thalamo-cortical processing | thalamo-cortical processing | audio-visual integration | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.720 Physiology of the Ear (MIT) HST.720 Physiology of the Ear (MIT)

Description

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders. Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.

Subjects

cochlear physiology | cochlear physiology | cochlea | cochlea | ear | ear | ear canal | ear canal | inner ear | inner ear | middle ear | middle ear | outer ear | outer ear | auditory pathway | auditory pathway | auditory nerve | auditory nerve | auditory brainstem | auditory brainstem | acoustic coupling | acoustic coupling | auditory periphery | auditory periphery | acoustic signals | acoustic signals | sound transmission | sound transmission | cochlear amplification | cochlear amplification | synaptic transmission | synaptic transmission | hair cell transduction | hair cell transduction | efferent feedback control | efferent feedback control | hearing disorders | hearing disorders | hearing | hearing | cochlear mechanics | cochlear mechanics | basilar membrane | basilar membrane | auditory nerve fiber response | auditory nerve fiber response | otoacoustic emissions | otoacoustic emissions | outer hair cell | outer hair cell

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | 9.044 | separation operations | recovery of products from biological processes | membrane filtration | chromatography | centrifugation | cell disruption | extraction | process design | downstream processing | biochemical product recovery | modes of recovery and purification | biochemical engineering | hearing | speech | auditory brainstem | auditory cortex | auditory reflexes | descending systems | human auditory system | speech motor control | auditory learning | cortical representation | dorsal cochlear nucleus | neural coding | thalamo-cortical organization | thalamo-cortical processing | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.720 Physiology of the Ear (MIT)

Description

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.

Subjects

cochlear physiology | cochlea | ear | ear canal | inner ear | middle ear | outer ear | auditory pathway | auditory nerve | auditory brainstem | acoustic coupling | auditory periphery | acoustic signals | sound transmission | cochlear amplification | synaptic transmission | hair cell transduction | efferent feedback control | hearing disorders | hearing | cochlear mechanics | basilar membrane | auditory nerve fiber response | otoacoustic emissions | outer hair cell

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata