Searching for biochemical mechanisms : 8 results found | RSS Feed for this search

5.08J Biological Chemistry II (MIT) 5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids. This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biochemistry | biological chemistry | biological chemistry | Rasmol | Rasmol | Deep Viewer | Deep Viewer | CHIME | CHIME | BLAST | BLAST | PDB | PDB | macromolecular machines | macromolecular machines | protein folding | protein folding | protein degradation | protein degradation | fatty acid synthases | fatty acid synthases | polyketide synthases | polyketide synthases | non-ribosomal polypeptide synthases | non-ribosomal polypeptide synthases | metal homeostasis | metal homeostasis | biochemical mechanisms | biochemical mechanisms | biochemical pathways | biochemical pathways | macromolecular interactions | macromolecular interactions | ribosome | ribosome | mRNA | mRNA | metabolic networking | metabolic networking | 5.08 | 5.08 | 7.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized. This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | molecular biology | biochemical mechanisms | biochemical mechanisms | gene expression | gene expression | evolution | evolution | prokaryotic genome | prokaryotic genome | eukaryotic genomes | eukaryotic genomes | gene regulation | gene regulation | DNA replication | DNA replication | genetic recombination | genetic recombination | RNA processing | RNA processing | translation | translation | genome | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biological chemistry | Rasmol | Deep Viewer | CHIME | BLAST | PDB | macromolecular machines | protein folding | protein degradation | fatty acid synthases | polyketide synthases | non-ribosomal polypeptide synthases | metal homeostasis | biochemical mechanisms | biochemical pathways | macromolecular interactions | ribosome | mRNA | metabolic networking | 5.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biological chemistry | Rasmol | Deep Viewer | CHIME | BLAST | PDB | macromolecular machines | protein folding | protein degradation | fatty acid synthases | polyketide synthases | non-ribosomal polypeptide synthases | metal homeostasis | biochemical mechanisms | biochemical pathways | macromolecular interactions | ribosome | mRNA | metabolic networking | 5.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata