Searching for biomass : 18 results found | RSS Feed for this search

1

22.081J Introduction to Sustainable Energy (MIT) 22.081J Introduction to Sustainable Energy (MIT)

Description

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments. This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subjects

22.081 | 22.081 | 2.650 | 2.650 | 10.291 | 10.291 | 1.818 | 1.818 | 10.391 | 10.391 | 11.371 | 11.371 | 22.811 | 22.811 | ESD.166 | ESD.166 | energy transfer | energy transfer | clean technologies | clean technologies | energy resource assessment | energy resource assessment | energy conversion | energy conversion | wind power | wind power | nuclear proliferation | nuclear proliferation | nuclear waste disposal | nuclear waste disposal | carbon management options | carbon management options | geothermal energy | geothermal energy | solar photovoltaics | solar photovoltaics | solar thermal energy | solar thermal energy | biomass energy | biomass energy | biomass conversion | biomass conversion | eco-buildings | eco-buildings | hydropower | hydropower

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

The assessment of current and potential future energy systems is covered in this course and includes topics on resources, extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Detailed information on the course textbook can be found here: Tester, J. W., E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Sustainable Energy - Choosing Among Options. Cambridge, MA: MIT Press, 2005. ISBN: 0262201534. The assessment of current and potential future energy systems is covered in this course and includes topics on resources, extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Detailed information on the course textbook can be found here: Tester, J. W., E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Sustainable Energy - Choosing Among Options. Cambridge, MA: MIT Press, 2005. ISBN: 0262201534.

Subjects

renewable energy | renewable energy | conservation | conservation | alternative power | alternative power | thermodynamics | thermodynamics | efficiency | efficiency | system analysis | system analysis | greenhouse | greenhouse | consumption | consumption | fuel | fuel | resource allocation | resource allocation | sustainable energy | sustainable energy | energy use | energy use | energy transfer | energy transfer | conversion | conversion | clean technologies | clean technologies | nuclear energy | nuclear energy | electrochemical energy | electrochemical energy | biomass energy | biomass energy | wind power | wind power | fusion energy | fusion energy | fossil energy | fossil energy | solar thermal energy | solar thermal energy | energy supply | energy supply | energy demand | energy demand | 10.391 | 10.391 | 1.818 | 1.818 | 2.65 | 2.65 | 3.564 | 3.564 | 11.371 | 11.371 | 22.811ESD.166J | 22.811ESD.166J | ESD.166 | ESD.166

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.347 Fueling Sustainability: Engineering Microbial Systems for Biofuel Production (MIT) 7.347 Fueling Sustainability: Engineering Microbial Systems for Biofuel Production (MIT)

Description

The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in

Subjects

Engineering | Engineering | Microbial Systems | Microbial Systems | Biofuel Production | Biofuel Production | energy | energy | plant biomass | plant biomass | cellulose | cellulose | enzymes | enzymes | bacteria | bacteria | ethanol | ethanol | cellulolytic enzymes | cellulolytic enzymes | Cellulolytic Bacteria and Fungi | Cellulolytic Bacteria and Fungi | cellulases | cellulases | cellulosomes | cellulosomes | E. coli | E. coli | yeast | yeast

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | Assessment of energy systems | resources | resources | extraction | extraction | conversion | conversion | and end-use | and end-use | regional and global energy needs | regional and global energy needs | 21st century | 21st century | sustainable manner | sustainable manner | renewable and conventional energy technologies | renewable and conventional energy technologies | biomass energy | biomass energy | fossil fuels | fossil fuels | geothermal energy | geothermal energy | nuclear power | nuclear power | wind power | wind power | solar energy | solar energy | hydrogen fuel | hydrogen fuel | fusion energy | fusion energy | analysis of energy technology systems | analysis of energy technology systems | political | political | social | social | economic | economic | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.701J D-Lab I: Development (MIT) EC.701J D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

EC.701 | EC.701 | 11.025 | 11.025 | 11.472 | 11.472 | development project | development project | appropriate technology | appropriate technology | sustainable development | sustainable development | intermediate technology | intermediate technology | stakeholder analysis | stakeholder analysis | China | China | India | India | Rwanda | Rwanda | Sierra Leone | Sierra Leone | Tanzania | Tanzania | Africa | Africa | developing country | developing country | international development | international development | third world | third world | poverty | poverty | bottom of the pyramid;cooking | bottom of the pyramid;cooking | latrine | latrine | grain mill | grain mill | solar energy | solar energy | stove | stove | energy | energy | charcoal | charcoal | wheelchair | wheelchair | water | water | water quality | water quality | safe water | safe water | water treatment | water treatment | health | health | sanitation | sanitation | World Bank | World Bank | NGO | NGO | United Nations | United Nations | ICT4D | ICT4D | ICT4C | ICT4C | microfinance | microfinance | micro-finance | micro-finance | AIDS | AIDS | HIV | HIV | wind power | wind power | solar power | solar power | biomass | biomass | biodiesel | biodiesel | biogas | biogas | agriculture | agriculture | farming | farming | food | food | green revolution | green revolution | millenium development goals | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.081J Introduction to Sustainable Energy (MIT)

Description

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subjects

22.081 | 2.650 | 10.291 | 1.818 | 10.391 | 11.371 | 22.811 | ESD.166 | energy transfer | clean technologies | energy resource assessment | energy conversion | wind power | nuclear proliferation | nuclear waste disposal | carbon management options | geothermal energy | solar photovoltaics | solar thermal energy | biomass energy | biomass conversion | eco-buildings | hydropower

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.721 D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

development project | appropriate technology | sustainable development | intermediate technology | stakeholder analysis | China | India | Rwanda | Sierra Leone | Tanzania | Africa | developing country | international development | third world | poverty | bottom of the pyramid;cooking | latrine | grain mill | solar energy | stove | energy | charcoal | wheelchair | water | water quality | safe water | water treatment | health | sanitation | World Bank | NGO | United Nations | ICT4D | ICT4C | microfinance | micro-finance | AIDS | HIV | wind power | solar power | biomass | biodiesel | biogas | agriculture | farming | food | green revolution | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: solar energy

Description

Level: Intermediate

Subjects

biomass conversion | photovoltaic conversion | solar energy | solar heating | ukoer | geesoer | geography | environmental science | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: An introduction to energy resources

Description

Energy resources are essential for any society, be it one dependent on subsistence farming or an industrialised country. There are many different sources of energy, some well-known such as coal or petroleum, others less so, such as tides or the heat inside the Earth. Is nuclear power a salvation or a nightmare? This unit provides background information to each resource, so that you can assess them for yourself.

Subjects

anoxic biomass carbohydrates energy density energy efficiency energy force fossil fuels fuels geesoer hydropower kinetic energy methane nuclear energy photosynthesis potential energy power primary energy renewable energy supplies residence time respiration solar energy ukoer work | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How green are the Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | biomass | sponsors | fossil fuels | ukoer | hlst | engscoer | oer | ll2012 | london 2012 | olympics | olympic games | paralympics | paralympic games | learning legacies | jisc | hea | oxford brookes university | hlstoer | ioc | locog | oda | olympic park | olympic delivery authority | the olympics impact and legacy | Social studies | L000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | resources | extraction | conversion | and end-use | regional and global energy needs | 21st century | sustainable manner | renewable and conventional energy technologies | biomass energy | fossil fuels | geothermal energy | nuclear power | wind power | solar energy | hydrogen fuel | fusion energy | analysis of energy technology systems | political | social | economic | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT)

Description

The assessment of current and potential future energy systems is covered in this course and includes topics on resources, extraction, conversion, and end-use, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. Detailed information on the course textbook can be found here: Tester, J. W., E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Sustainable Energy - Choosing Among Options. Cambridge, MA: MIT Press, 2005. ISBN: 0262201534.

Subjects

renewable energy | conservation | alternative power | thermodynamics | efficiency | system analysis | greenhouse | consumption | fuel | resource allocation | sustainable energy | energy use | energy transfer | conversion | clean technologies | nuclear energy | electrochemical energy | biomass energy | wind power | fusion energy | fossil energy | solar thermal energy | energy supply | energy demand | 10.391 | 1.818 | 2.65 | 3.564 | 11.371 | 22.811ESD.166J | ESD.166

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.347 Fueling Sustainability: Engineering Microbial Systems for Biofuel Production (MIT)

Description

The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in

Subjects

Engineering | Microbial Systems | Biofuel Production | energy | plant biomass | cellulose | enzymes | bacteria | ethanol | cellulolytic enzymes | Cellulolytic Bacteria and Fungi | cellulases | cellulosomes | E. coli | yeast

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.701J D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

EC.701 | 11.025 | 11.472 | development project | appropriate technology | sustainable development | intermediate technology | stakeholder analysis | China | India | Rwanda | Sierra Leone | Tanzania | Africa | developing country | international development | third world | poverty | bottom of the pyramid;cooking | latrine | grain mill | solar energy | stove | energy | charcoal | wheelchair | water | water quality | safe water | water treatment | health | sanitation | World Bank | NGO | United Nations | ICT4D | ICT4C | microfinance | micro-finance | AIDS | HIV | wind power | solar power | biomass | biodiesel | biogas | agriculture | farming | food | green revolution | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata