Searching for cartilage : 15 results found | RSS Feed for this search
Description
This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.Subjects
2.782 | 2.782 | 3.961 | 3.961 | 20.451 | 20.451 | HST.524 | HST.524 | clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | anatomic fit | anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | stent | stent | prosthesis | prosthesis | scaffold | scaffold | bio-implant | bio-implant | scar | scar | genetics | genetics | skin | skin | nerve | nerve | bone | bone | tooth | tooth | joint | joint | FDA | FDA | FDA approval | FDA approval | cartilage | cartilage | ACL | ACL | health | health | regulation | regulation | healthcare | healthcare | medicine | medicine | bioengineering | bioengineeringLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffol The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffolSubjects
tissue engineering | tissue engineering | scaffold | scaffold | cell | cell | stem cell | stem cell | collagen | collagen | GAG | GAG | ECM | ECM | extracellular matrix | extracellular matrix | biomimetics | biomimetics | healing | healing | skin | skin | nerve | nerve | bone | bone | cartilage | cartilageLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-HST.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataHST.523J Cell-Matrix Mechanics (MIT) HST.523J Cell-Matrix Mechanics (MIT)
Description
Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine. Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.Subjects
cell | cell | tissue | tissue | organ | organ | unit cell process | unit cell process | cell matrix | cell matrix | tissue structure | tissue structure | extracellular matrix | extracellular matrix | adhesion protein | adhesion protein | integrin | integrin | cell force | cell force | cell contraction | cell contraction | healing | healing | skin | skin | scar | scar | tendon | tendon | ligament | ligament | cartilage | cartilage | bone | bone | collagen | collagen | muscle | muscle | nerve | nerve | implant | implant | HST.523 | HST.523 | 2.785 | 2.785 | 3.97 | 3.97 | 20.411 | 20.411License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataKosti - križanka Bones - crossword
Description
Križanka sestavljena iz besed povezanih s kostmi. Crossword puzzle build of terms related to the bones.Subjects
znanstvene vede | sciences | naravoslovne vede | natural sciences | biološke vede | biological sciences | biologija | biology | kost | bone | hrustanec | cartilage | človeško telo | human body | križanka | crosswordLicense
http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/Site sourced from
http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljskaAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataHST.523J Cell-Matrix Mechanics (MIT)
Description
Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.Subjects
cell | tissue | organ | unit cell process | cell matrix | tissue structure | extracellular matrix | adhesion protein | integrin | cell force | cell contraction | healing | skin | scar | tendon | ligament | cartilage | bone | collagen | muscle | nerve | implant | HST.523 | 2.785 | 3.97 | 20.411License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
A post mortem specimen of a pastern joint showing cartilage wearSubjects
svmsvet | equine | horse | pastern | cartilage | wear | erosion | dissection | post | mortem | joint | diseaseLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/Site sourced from
Nottingham Vet School | FlickRAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
A post mortem specimen showing the pastern joint in the equine distal limbLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/Site sourced from
Nottingham Vet School | FlickRAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This topic begins with the primary functions of bone and explores the structure, showcasing anatomical images of the femur as an example. A diagrammatical overview of a bone cross-section is shown and bone structure is explored by describing the bone matrix and its composition along with its functions. A brief overview of the different types of bone cells and their relevant functions are highlighted.Subjects
bone | femur | anatomy | matrix | osteoprogenitors | osteoblasts | osteocytes | cartilage | ukoer | ooer | medev | Anatomy | Biological Sciences | Medicine and Dentistry | Subjects allied to Medicine | SAFETY | Students | Institutions | Teaching | UK EL09 = SCQF 9 | Ordinary degree | NICAT 6 | CQFW 6 | NVQ 5 | SVQ 5 | Ordinary degree | Graduate certific | dentistry | A000License
Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This topic begins with a good introduction to the different types of joints (fibrous, cartilaginous and synovial) and each is described in more detail. A table gives a comparison between joint types and modern everyday items for the students to relate to (e.g. a hinge and the elbow joint). The next part of this topic describes the muscular system and gives a brief introduction to the axial and appendicular muscular system. The three types of muscle tissue are also described.Subjects
muscles | joints | synovial | cartilage | fibrous | muscular system | ukoer | ooer | medev | Medicine and Dentistry | Subjects allied to Medicine | SAFETY | Learning | Teaching | Institutions | Students | UK EL10 = SCQF 10 | Honours degree | Graduate diploma | dentistry | A000License
Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This topic starts with a description of the main functions of bone (e.g. surface for attachment). Bone composition and endochondral ossification is described and a diagram showing the stages is given. The different types of bones (e.g. short, flat) and the structure of long bones are detailed further. Diagrams showing the different regions of the spine are included. Bone modelling and remodelling are described.Subjects
muscles | skeletal | joints | cartilage | bones | musculoskeletal system | ukoer | ooer | medev | Medicine and Dentistry | Subjects allied to Medicine | SAFETY | Learning | Teaching | Institutions | Students | UK EL10 = SCQF 10 | Honours degree | Graduate diploma | dentistry | A000License
Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
A post mortem specimen of a pastern joint showing cartilage wearSubjects
svmsvet | equine | horse | pastern | cartilage | wear | erosion | dissection | post | mortem | joint | diseaseLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/Site sourced from
Nottingham Vet School | FlickRAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
A post mortem specimen showing the pastern joint in the equine distal limbLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/Site sourced from
Nottingham Vet School | FlickRAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataHST.523J Cell-Matrix Mechanics (MIT)
Description
Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.Subjects
cell | tissue | organ | unit cell process | cell matrix | tissue structure | extracellular matrix | adhesion protein | integrin | cell force | cell contraction | healing | skin | scar | tendon | ligament | cartilage | bone | collagen | muscle | nerve | implant | HST.523 | 2.785 | 3.97 | 20.411License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.782J Design of Medical Devices and Implants (MIT)
Description
This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.Subjects
2.782 | 3.961 | 20.451 | HST.524 | clinical problems | implants | medical devices | cell-matrix control volumes | stress analysis | anatomic fit | biomaterials | surgical implantation procedures | Preclinical testing | risk/benefit ratio assessment | clinical performance | clinical trials | orthopedic devices | soft tissue implants | artificial organs | dental implants | stent | prosthesis | scaffold | bio-implant | scar | genetics | skin | nerve | bone | tooth | joint | FDA | FDA approval | cartilage | ACL | health | regulation | healthcare | medicine | bioengineeringLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataHST.535 Principles and Practice of Tissue Engineering (MIT)
Description
The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffolSubjects
tissue engineering | scaffold | cell | stem cell | collagen | GAG | ECM | extracellular matrix | biomimetics | healing | skin | nerve | bone | cartilageLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata