Searching for coherence : 30 results found | RSS Feed for this search

1

6.450 Principles of Digital Communication I (MIT) 6.450 Principles of Digital Communication I (MIT)

Description

The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451 Principles of Digital Communication II, is offered in the spring. Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication. The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451 Principles of Digital Communication II, is offered in the spring. Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.

Subjects

digital communication | digital communication | data compression | data compression | Lempel-Ziv algorithm | Lempel-Ziv algorithm | scalar quantization | scalar quantization | vector quantization | vector quantization | sampling | sampling | aliasing | aliasing | Nyquist criterion | Nyquist criterion | PAM modulation | PAM modulation | QAM modulation | QAM modulation | signal constellations | signal constellations | finite-energy waveform spaces | finite-energy waveform spaces | detection | detection | communication system design | communication system design | wireless | wireless | discrete source encoding | discrete source encoding | memory-less sources | memory-less sources | entropy | entropy | asymptotic equipartition property | asymptotic equipartition property | Fourier series | Fourier series | Fourier transforms | Fourier transforms | sampling theorem | sampling theorem | orthonormal expansions | orthonormal expansions | random processes | random processes | linear functionals | linear functionals | theorem of irrelevance | theorem of irrelevance | Doppler spread | Doppler spread | time spread | time spread | coherence time | coherence time | coherence frequency | coherence frequency | Rayleigh fading | Rayleigh fading | Rake receivers | Rake receivers | CDMA | CDMA | code division multiple access | code division multiple access

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT) 12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themesLinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.Standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc. The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themesLinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.Standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

kinematical and dynamical models | kinematical and dynamical models | Basic statistics | Basic statistics | linear algebra | linear algebra | inverse methods | inverse methods | singular value decompositions | singular value decompositions | control theory | control theory | sequential estimation | sequential estimation | Kalman filters | Kalman filters | smoothing algorithms | smoothing algorithms | adjoint/Pontryagin principle methods | adjoint/Pontryagin principle methods | model testing | model testing | stationary processes | stationary processes | Fourier methods | Fourier methods | z-transforms | z-transforms | sampling theorems | sampling theorems | spectra | spectra | multi-taper methods | multi-taper methods | coherences | coherences | filtering | filtering | quantitative combinations of models | quantitative combinations of models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT) 12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themeslinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc. The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themeslinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

observation | observation | kinematical models | kinematical models | dynamical models | dynamical models | basic statistics | basic statistics | linear algebra | linear algebra | inverse methods | inverse methods | singular value decompositions | singular value decompositions | control theory | control theory | sequential estimation | sequential estimation | Kalman filters | Kalman filters | smoothing algorithms | smoothing algorithms | adjoint/Pontryagin principle methods | adjoint/Pontryagin principle methods | model testing | model testing | stationary processes | stationary processes | Fourier methods | Fourier methods | z-transforms | z-transforms | sampling theorems | sampling theorems | spectra | spectra | multi-taper methods | multi-taper methods | coherences | coherences | filtering | filtering | quantitative combinations | quantitative combinations | realistic observations | realistic observations | data assimilations | data assimilations | deduction | deduction | regression | regression | objective mapping | objective mapping | time series analysis | time series analysis | inference | inference

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points. 6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT) 2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included. This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | Fourier optics | probability | probability | stochastic processes | stochastic processes | light statistics | light statistics | theory of light coherence | theory of light coherence | van Cittert-Zernicke Theorem | van Cittert-Zernicke Theorem | statistical optics applications | statistical optics applications | inverse problems | inverse problems | information-theoretic views | information-theoretic views | information theory | information theory | 2.717 | 2.717 | MAS.857 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject. 6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.892 Computational Models of Discourse (MIT) 6.892 Computational Models of Discourse (MIT)

Description

This course is a graduate level introduction to automatic discourse processing. The emphasis will be on methods and models that have applicability to natural language and speech processing. The class will cover the following topics: discourse structure, models of coherence and cohesion, plan recognition algorithms, and text segmentation. We will study symbolic as well as machine learning methods for discourse analysis. We will also discuss the use of these methods in a variety of applications ranging from dialogue systems to automatic essay writing. This subject qualifies as an Artificial Intelligence and Applications concentration subject. This course is a graduate level introduction to automatic discourse processing. The emphasis will be on methods and models that have applicability to natural language and speech processing. The class will cover the following topics: discourse structure, models of coherence and cohesion, plan recognition algorithms, and text segmentation. We will study symbolic as well as machine learning methods for discourse analysis. We will also discuss the use of these methods in a variety of applications ranging from dialogue systems to automatic essay writing. This subject qualifies as an Artificial Intelligence and Applications concentration subject.

Subjects

automatic discourse processing | automatic discourse processing | natural language | natural language | speech processing | speech processing | discourse structure | discourse structure | models of coherence and cohesion | models of coherence and cohesion | plan recognition algorithms | plan recognition algorithms | text segmentation | text segmentation | symbolic learning | symbolic learning | machine learning | machine learning | discourse analysis | discourse analysis | dialogue systems | dialogue systems | automatic essay writing | automatic essay writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT) 12.864 Inference from Data and Models (MIT)

Description

This course covers the fundamental methods used for exploring the information content of observations related to kinematical and dynamical models. This course covers the fundamental methods used for exploring the information content of observations related to kinematical and dynamical models.

Subjects

kinematical and dynamical models | kinematical and dynamical models | Basic statistics | Basic statistics | linear algebra | linear algebra | inverse methods | inverse methods | singular value decompositions | singular value decompositions | control theory | control theory | sequential estimation | sequential estimation | Kalman filters | Kalman filters | smoothing algorithms | smoothing algorithms | adjoint/Pontryagin principle methods | adjoint/Pontryagin principle methods | model testing | model testing | stationary processes | stationary processes | Fourier methods | Fourier methods | z-transforms | z-transforms | sampling theorems | sampling theorems | spectra | spectra | multi-taper methods | multi-taper methods | coherences | coherences | filtering | filtering | quantitative combinations of models | quantitative combinations of models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.231 Ethics (MIT) 24.231 Ethics (MIT)

Description

This will be a seminar on classic and contemporary work on central topics in ethics. The first third of the course will focus on metaethics: we will examine the meaning of moral claims and ask whether there is any sense in which moral principles are objectively valid. The second third of the course will focus on normative ethics: what makes our lives worth living, what makes our actions right or wrong, and what do we owe to others? The final third of the course will focus on moral character: what is virtue, and how important is it? Can we be held responsible for what we do? When and why? This will be a seminar on classic and contemporary work on central topics in ethics. The first third of the course will focus on metaethics: we will examine the meaning of moral claims and ask whether there is any sense in which moral principles are objectively valid. The second third of the course will focus on normative ethics: what makes our lives worth living, what makes our actions right or wrong, and what do we owe to others? The final third of the course will focus on moral character: what is virtue, and how important is it? Can we be held responsible for what we do? When and why?

Subjects

ethics | ethics | euthyphro | euthyphro | Plato | Plato | goodness | goodness | non-naturalism | non-naturalism | G. E. Moore | G. E. Moore | non-cognitivism | non-cognitivism | Alfred Jules Ayer | Alfred Jules Ayer | David Brink | David Brink | cognitivism | cognitivism | Gilbert Harman | Gilbert Harman | Nicholas Sturgeon | Nicholas Sturgeon | observation | observation | morality | morality | moral relativism | moral relativism | Philippa Foot | Philippa Foot | David Lyons | David Lyons | incoherence | incoherence | ethical relativism | ethical relativism | John Stuart Mill | John Stuart Mill | utilitarianism | utilitarianism | Robert Nozick | Robert Nozick | Derek Parfit | Derek Parfit | Alastair Norcross | Alastair Norcross | philosophy | philosophy | Bernard Williams | Bernard Williams | James Lenman | James Lenman | consequentialism | consequentialism | cluelessness | cluelessness | Peter Singer | Peter Singer | act-utilitarianism | act-utilitarianism | John Rawls | John Rawls | rules | rules | Thomas Nagel | Thomas Nagel | famine | famine | affluence | affluence | Nomy Arpaly | Nomy Arpaly | moral worth | moral worth | Susan Wolf | Susan Wolf | moral saints | moral saints | Peter van Inwagen | Peter van Inwagen | free will | free will | determinism | determinism | Harry Frankfurt | Harry Frankfurt | moral responsibility | moral responsibility | moral luck | moral luck

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-24.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT) 8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods. This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | atomic | optical physics | optical physics | Non-classical states of light | Non-classical states of light | squeezed states | squeezed states | multi-photon processes | multi-photon processes | Raman scattering | Raman scattering | coherence | coherence | level crossings | level crossings | quantum beats | quantum beats | double resonance | double resonance | superradiance | superradiance | trapping and cooling | trapping and cooling | light forces | light forces | laser cooling | laser cooling | atom optics | atom optics | spectroscopy of trapped atoms and ions | spectroscopy of trapped atoms and ions | atomic interactions | atomic interactions | classical collisions | classical collisions | quantum scattering theory | quantum scattering theory | ultracold collisions | ultracold collisions | experimental methods | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.421 Atomic and Optical Physics I (MIT) 8.421 Atomic and Optical Physics I (MIT)

Description

Includes audio/video content: AV lectures. This is the first of a two-semester subject sequence that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods. Includes audio/video content: AV lectures. This is the first of a two-semester subject sequence that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.

Subjects

atom | atom | atomic and optical physics | atomic and optical physics | resonance | resonance | resonance frequency | resonance frequency | harmonic oscillator | harmonic oscillator | oscillation frequency | oscillation frequency | magnetic field | magnetic field | electric field | electric field | Landau-Zener problem | Landau-Zener problem | lamb shift | lamb shift | line broadening | line broadening | coherence | coherence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.450 Principles of Digital Communication I (MIT)

Description

The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451 Principles of Digital Communication II, is offered in the spring. Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.

Subjects

digital communication | data compression | Lempel-Ziv algorithm | scalar quantization | vector quantization | sampling | aliasing | Nyquist criterion | PAM modulation | QAM modulation | signal constellations | finite-energy waveform spaces | detection | communication system design | wireless | discrete source encoding | memory-less sources | entropy | asymptotic equipartition property | Fourier series | Fourier transforms | sampling theorem | orthonormal expansions | random processes | linear functionals | theorem of irrelevance | Doppler spread | time spread | coherence time | coherence frequency | Rayleigh fading | Rake receivers | CDMA | code division multiple access

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | optical physics | Non-classical states of light | squeezed states | multi-photon processes | Raman scattering | coherence | level crossings | quantum beats | double resonance | superradiance | trapping and cooling | light forces | laser cooling | atom optics | spectroscopy of trapped atoms and ions | atomic interactions | classical collisions | quantum scattering theory | ultracold collisions | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | probability | stochastic processes | light statistics | theory of light coherence | van Cittert-Zernicke Theorem | statistical optics applications | inverse problems | information-theoretic views | information theory | 2.717 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Text and Discourse

Description

The learning objectives in this lesson are, firstly, to categorise written and spoken texts into genres and identify their discourse communities. Secondly, we will discuss two important features of written and spoken texts: coherence and cohesion.

Subjects

developing lexical skills | top-down and bottom-up processing | product and process in writing | coherence and cohesion | EDUCATION / TRAINING / TEACHING | G

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | optical physics | Non-classical states of light | squeezed states | multi-photon processes | Raman scattering | coherence | level crossings | quantum beats | double resonance | superradiance | trapping and cooling | light forces | laser cooling | atom optics | spectroscopy of trapped atoms and ions | atomic interactions | classical collisions | quantum scattering theory | ultracold collisions | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Fluctuation dissipation theorem | Scattering experiment | f-sum rule | Physics of disorder | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Mott variable range hopping | Superconductor | Transverse response | Landau diamagnetism | Microscopic derivation of London equation | Effect of disorder | Quasiparticles and coherence factors | Tunneling and Josephson effect | Magnetism | Local moment magnetism | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Stoner theory | spin density wave | Local moment in metals | Friedel sum rule | Friedel-Anderson model | Kondo problem | Fermi liquid theory | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themesLinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.Standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

kinematical and dynamical models | Basic statistics | linear algebra | inverse methods | singular value decompositions | control theory | sequential estimation | Kalman filters | smoothing algorithms | adjoint/Pontryagin principle methods | model testing | stationary processes | Fourier methods | z-transforms | sampling theorems | spectra | multi-taper methods | coherences | filtering | quantitative combinations of models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themeslinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

observation | kinematical models | dynamical models | basic statistics | linear algebra | inverse methods | singular value decompositions | control theory | sequential estimation | Kalman filters | smoothing algorithms | adjoint/Pontryagin principle methods | model testing | stationary processes | Fourier methods | z-transforms | sampling theorems | spectra | multi-taper methods | coherences | filtering | quantitative combinations | realistic observations | data assimilations | deduction | regression | objective mapping | time series analysis | inference

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics | laboratory | polarization | light | reflection | refraction | coherence | interference | Fraunhofer diffraction | Fresnel diffraction | imaging | transforming | lenses | spatial filtering | coherent optical processors | holography | optical properties of materials | lasers | nonlinear optics | electro-optic | acousto-optic | optical detectors | fiber optics | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | probability | stochastic processes | light statistics | theory of light coherence | van Cittert-Zernicke Theorem | statistical optics applications | inverse problems | information-theoretic views | information theory | 2.717 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.421 Atomic and Optical Physics I (MIT)

Description

This is the first of a two-semester subject sequence that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.

Subjects

atom | atomic and optical physics | resonance | resonance frequency | harmonic oscillator | oscillation frequency | magnetic field | electric field | Landau-Zener problem | lamb shift | line broadening | coherence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.

Subjects

Linear response theory | Fluctuation dissipation theorem | Scattering experiment | f-sum rule | Physics of disorder | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Mott variable range hopping | Superconductor | Transverse response | Landau diamagnetism | Microscopic derivation of London equation | Effect of disorder | Quasiparticles and coherence factors | Tunneling and Josephson effect | Magnetism | Local moment magnetism | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Stoner theory | spin density wave | Local moment in metals | Friedel sum rule | Friedel-Anderson model | Kondo problem | Fermi liquid theory | Electron Green?s function

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata