Searching for cosmology : 55 results found | RSS Feed for this search
8.942 Cosmology (MIT) 8.942 Cosmology (MIT)
Description
This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.Subjects
cosmology | cosmology | thermal background | thermal background | cosmological principle | cosmological principle | Newtonian cosmology | Newtonian cosmology | types of universes | types of universes | relativistic cosmology | relativistic cosmology | horizons | horizons | evolution in cosmology | evolution in cosmology | radiation | radiation | element synthesis | element synthesis | Cosmic Microwave Background radiation | Cosmic Microwave Background radiation | galaxies | galaxies | high redshift | high redshift | cosmic structure formation | cosmic structure formationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)
Description
Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesisSubjects
solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)
Description
Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.Subjects
solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the UniverseLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.Subjects
cosmology | thermal background | cosmological principle | Newtonian cosmology | types of universes | relativistic cosmology | horizons | evolution in cosmology | radiation | element synthesis | Cosmic Microwave Background radiation | galaxies | high redshift | cosmic structure formationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata21A.350J The Anthropology of Computing (MIT) 21A.350J The Anthropology of Computing (MIT)
Description
This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation. This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation.Subjects
Computing | Computing | machines and culture | machines and culture | computation theory | computation theory | cybernetics | cybernetics | operations research | operations research | artifical intelligence | artifical intelligence | personal computer | personal computer | commodification | commodification | hacking | hacking | hacker | hacker | Internet | Internet | cyberspace | cyberspace | indentity in cyberspace | indentity in cyberspace | cosmology | cosmology | clockwork | clockwork | Charles Babbage | Charles Babbage | Ada Lovelace | Ada Lovelace | Industrial Revolution | Industrial Revolution | calculating machine | calculating machine | coding | coding | cold war | cold war | Alan Turing | Alan Turing | African mathematical systems | African mathematical systems | counterculture | counterculture | PC | PC | gaming | gaming | open source | open source | free software | free software | software | software | 21A.350 | 21A.350 | SP.484 | SP.484 | STS.086 | STS.086License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War. This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War.Subjects
relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Poincar? | Poincar? | Bohr | Bohr | Heisenberg | Heisenberg | Schr?dinger | Schr?dinger | McCarthyism | McCarthyism | Einstein | Einstein | Planck | Planck | Feynman | Feynman | scientific frontiers | scientific frontiersLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Rembrandt and Moliere. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Rembrandt and Moliere. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing.Subjects
history | history | art and science | art and science | art vs. science | art vs. science | history of science | history of science | religion | religion | natural philosophy | natural philosophy | mathematics | mathematics | literature | literature | cosmology | cosmology | physics | physics | astronomy | astronomy | alchemy | alchemy | chemistry | chemistry | plays | plays | theater history | theater history | cultural studies | cultural studies | Shakespeare | Shakespeare | Ford | Ford | Tate | Tate | Behn | Behn | Francis Bacon | Francis Bacon | Burton | Burton | Hobbes | Hobbes | Boyle | Boyle | 17th century | 17th century | England | England | english history | english history | Charles I | Charles I | Charles II | Charles II | Cromwell | CromwellLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.033 Relativity (MIT) 8.033 Relativity (MIT)
Description
Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.Subjects
Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrowsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.962 General Relativity (MIT) 8.962 General Relativity (MIT)
Description
This course covers the basic principles of Einstein's general theory of relativity. Also discussed are differential geometry, gravitomagnetism, gravitational radiation, experimental tests of general relativity, black holes, and cosmology. This course covers the basic principles of Einstein's general theory of relativity. Also discussed are differential geometry, gravitomagnetism, gravitational radiation, experimental tests of general relativity, black holes, and cosmology.Subjects
Einstein's general theory of relativity | Einstein's general theory of relativity | Einstein | Einstein | relativity | relativity | differential geometry | differential geometry | general relativity | general relativity | black holes | black holes | cosmology | cosmology | Hamiltonian Dynamics | Hamiltonian Dynamics | Curvature | Curvature | Acceleration | Acceleration | Hilbert action | Hilbert action | Orthonormal bases | Orthonormal bases | White dwarfs | White dwarfs | neutron stars | neutron stars | Kruskal coordinates | Kruskal coordinates | Wormholes | Wormholes | Hawking radiation | Hawking radiation | Kerr solution | Kerr solutionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century. This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century.Subjects
relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Bohr | Bohr | Heisenberg | Heisenberg | McCarthyism | McCarthyism | Poincar? | Poincar? | Schr?dinger | Schr?dinger | nuclear particles | nuclear particles | physics | physics | 20th century | 20th century | twentieth century | twentieth century | physicists | physicists | institutional | political | cultural context | institutional | political | cultural context | STS.042 | STS.042 | 8.225 | 8.225License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataAstrophysics (MIT) Astrophysics (MIT)
Description
Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advancedSubjects
black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advancedLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.033 Relativity (MIT) 8.033 Relativity (MIT)
Description
This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.Subjects
relativity | relativity | special relativity | special relativity | Einstein's postulates | Einstein's postulates | simultaneity | simultaneity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects | relativistic effects | Minkowski diagrams | Minkowski diagrams | relativistic invariants | relativistic invariants | four-vectors | four-vectors | relativitistic particle collisions | relativitistic particle collisions | relativity and electricity | relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | general relativity | general relativity | Schwarzchild metric | Schwarzchild metric | gravitational | gravitational | red shift | red shift | light trajectories | light trajectories | geodesics | geodesics | Shapiro delay | Shapiro delayLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course covers the basics of general relativity, standard big bang cosmology, thermodynamics of the early universe, cosmic background radiation, primordial nucleosynthesis, basics of the standard model of particle physics, electroweak and QCD phase transition, basics of group theory, grand unified theories, baryon asymmetry, monopoles, cosmic strings, domain walls, axions, inflationary universe, and structure formation. This course covers the basics of general relativity, standard big bang cosmology, thermodynamics of the early universe, cosmic background radiation, primordial nucleosynthesis, basics of the standard model of particle physics, electroweak and QCD phase transition, basics of group theory, grand unified theories, baryon asymmetry, monopoles, cosmic strings, domain walls, axions, inflationary universe, and structure formation.Subjects
general relativity | general relativity | big bang | big bang | cosmology | cosmology | thermodynamics | thermodynamics | early universe | early universe | cosmic background radiation | cosmic background radiation | primordial nucleosynthesis | primordial nucleosynthesis | standard model | standard model | electroweak and QCD phase transition | electroweak and QCD phase transition | group theory | group theory | grand unified theories | grand unified theories | baryon asymmetry | baryon asymmetry | monopoles | monopoles | cosmic strings | cosmic strings | domain walls | domain walls | axions | axions | inflationary universe | inflationary universe | structure formation | structure formationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.962 General Relativity (MIT) 8.962 General Relativity (MIT)
Description
8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology. 8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.Subjects
Spacetime | Spacetime | tensors | tensors | special relativity | special relativity | differential geometry | differential geometry | Einstein's equation | Einstein's equation | gravitation | gravitation | cosmological constant | cosmological constant | Hilbert action | Hilbert action | general relativity | general relativity | gravitational waves | gravitational waves | gravitational lensing | gravitational lensing | cosmology | cosmology | Schwarzschild solution | Schwarzschild solution | black holes | black holesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.284 Modern Astrophysics (MIT) 8.284 Modern Astrophysics (MIT)
Description
This course explores the applications of physics (Newtonian, statistical, and quantum mechanics) to fundamental processes that occur in celestial objects. The list of topics includes Main-sequence Stars, Collapsed Stars (White Dwarfs, Neutron Stars, and Black Holes), Pulsars, Supernovae, the Interstellar Medium, Galaxies, and as time permits, Active Galaxies, Quasars, and Cosmology. Observational data is also discussed. This course explores the applications of physics (Newtonian, statistical, and quantum mechanics) to fundamental processes that occur in celestial objects. The list of topics includes Main-sequence Stars, Collapsed Stars (White Dwarfs, Neutron Stars, and Black Holes), Pulsars, Supernovae, the Interstellar Medium, Galaxies, and as time permits, Active Galaxies, Quasars, and Cosmology. Observational data is also discussed.Subjects
Stars | Stars | equations stellar structure | equations stellar structure | stellar evolution | stellar evolution | stellar abundances | stellar abundances | binary | binary | binary stars | binary stars | interstellar medium: neutral and ionized gas | interstellar medium: neutral and ionized gas | dust | dust | HII regions | HII regions | supernovae | supernovae | shocks | shocks | galaxies | galaxies | galaxy clusters | galaxy clusters | galactic structure | galactic structure | stellar hydrodynamics | stellar hydrodynamics | massive halos | massive halos | active galactic nuclei | active galactic nuclei | cosmology | cosmology | Friedmann models | Friedmann models | primordial nucleosynthesis | primordial nucleosynthesis | microwave background radiation | microwave background radiationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.902 Astrophysics II (MIT) 8.902 Astrophysics II (MIT)
Description
This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation. This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.Subjects
Galactic dynamics | Galactic dynamics | potential theory | potential theory | orbits | orbits | collisionless Boltzmann equations | collisionless Boltzmann equations | Galaxy interactions | Galaxy interactions | Groups and clusters | Groups and clusters | dark matter | dark matter | Intergalactic medium | Intergalactic medium | x-ray clusters | x-ray clusters | Active galactic nuclei | Active galactic nuclei | unified models | unified models | black hole accretion | black hole accretion | radio and optical jets | radio and optical jets | Homogeneity and isotropy | Homogeneity and isotropy | redshift | redshift | galaxy distance ladder | galaxy distance ladder | Newtonian cosmology | Newtonian cosmology | Roberston-Walker models and cosmography | Roberston-Walker models and cosmography | Early universe | Early universe | primordial nucleosynthesis | primordial nucleosynthesis | recombination | recombination | Cosmic microwave background radiation | Cosmic microwave background radiation | Large-scale structure | Large-scale structure | galaxy formation | galaxy formationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata21A.212 Myth, Ritual, and Symbolism (MIT) 21A.212 Myth, Ritual, and Symbolism (MIT)
Description
Human beings are symbol-making as well as tool-making animals. We understand our world and shape our lives in large part by assigning meanings to objects, beings, and persons; by connecting things together in symbolic patterns; and by creating elaborate forms of symbolic action and narrative. In this introductory subject we consider how symbols are created and structured; how they draw on and give meaning to different domains of the human world; how they are woven into politics, family life, and the life cycle; and how we can interpret them. The semester will be devoted to a number of topics in symbolism. Metaphor and Other Figurative Language The Raw Materials of Symbolism, especially Animals and The Human Body Cosmology and Complex Symbolic Systems Ritual, including Symbolic Curing Human beings are symbol-making as well as tool-making animals. We understand our world and shape our lives in large part by assigning meanings to objects, beings, and persons; by connecting things together in symbolic patterns; and by creating elaborate forms of symbolic action and narrative. In this introductory subject we consider how symbols are created and structured; how they draw on and give meaning to different domains of the human world; how they are woven into politics, family life, and the life cycle; and how we can interpret them. The semester will be devoted to a number of topics in symbolism. Metaphor and Other Figurative Language The Raw Materials of Symbolism, especially Animals and The Human Body Cosmology and Complex Symbolic Systems Ritual, including Symbolic CuringSubjects
anthropology | anthropology | myth | myth | ritual | ritual | symbolism | symbolism | animals | animals | symbolic system | symbolic system | meaning | meaning | life cycle | life cycle | metaphor | metaphor | figurative language | figurative language | human body | human body | cosmology | cosmology | magic | magic | narrative | narrative | mythology | mythology | patterns | patterns | culture | culture | sign | sign | tropes | tropes | classification | classification | interpretation | interpretation | folktale | folktale | power | power | passage | passage | persuasion | persuasionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Milton and Ford. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. The primary theme of the class is to explore how England in the mid-seventeenth century became "a world turned upside down" by the new ideas and upheavals in religion, politics, and philosophy, ideas that would shape our modern world. Paying special This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Milton and Ford. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. The primary theme of the class is to explore how England in the mid-seventeenth century became "a world turned upside down" by the new ideas and upheavals in religion, politics, and philosophy, ideas that would shape our modern world. Paying specialSubjects
history | history | art and science | art and science | art vs. science | art vs. science | history of science | history of science | religion | religion | natural philosophy | natural philosophy | mathematics | mathematics | literature | literature | church | church | cosmology | cosmology | physics | physics | philosphy | philosphy | astronomy | astronomy | alchemy | alchemy | chemistry | chemistry | plays | plays | theater history | theater history | cultural studies | cultural studies | Shakespeare | Shakespeare | Ford | Ford | Tate | Tate | Behn | Behn | Francis Bacon | Francis Bacon | Burton | Burton | Hobbes | Hobbes | Boyle | Boyle | 17th century | 17th century | England | England | Scotland | Scotland | english history | english history | scottish history | scottish history | Britain | Britain | Charles I | Charles I | Charles II | Charles II | Cromwell | Cromwell | Jacobean era | Jacobean era | Caroline era | Caroline era | English Restoration | English Restoration | House of Stuart | House of Stuart | English Civil War | English Civil War | Early Modern English | Early Modern EnglishLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataSTS.003 The Rise of Modern Science (MIT) STS.003 The Rise of Modern Science (MIT)
Description
This subject introduces the history of science from antiquity to the present. Students consider the impact of philosophy, art, magic, social structure, and folk knowledge on the development of what has come to be called "science" in the Western tradition, including those fields today designated as physics, biology, chemistry, medicine, astronomy and the mind sciences. Topics include concepts of matter, nature, motion, body, heavens, and mind as these have been shaped over the course of history. Students read original works by Aristotle, Vesalius, Newton, Lavoisier, Darwin, Freud, and Einstein, among others. This subject introduces the history of science from antiquity to the present. Students consider the impact of philosophy, art, magic, social structure, and folk knowledge on the development of what has come to be called "science" in the Western tradition, including those fields today designated as physics, biology, chemistry, medicine, astronomy and the mind sciences. Topics include concepts of matter, nature, motion, body, heavens, and mind as these have been shaped over the course of history. Students read original works by Aristotle, Vesalius, Newton, Lavoisier, Darwin, Freud, and Einstein, among others.Subjects
history of science | history of science | philosophy | philosophy | ancient history | ancient history | medieval history | medieval history | industrial revolution | industrial revolution | natural history | natural history | cosmology | cosmology | psychology | psychology | relativity | relativityLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-STS.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataSTS.002 Toward the Scientific Revolution (MIT) STS.002 Toward the Scientific Revolution (MIT)
Description
This subject traces the evolution of ideas about nature, and how best to study and explain natural phenomena, beginning in ancient times and continuing through the Middle Ages and the Renaissance. A central theme of the subject is the intertwining of conceptual and institutional relations within diverse areas of inquiry: cosmology, natural history, physics, mathematics, and medicine. This subject traces the evolution of ideas about nature, and how best to study and explain natural phenomena, beginning in ancient times and continuing through the Middle Ages and the Renaissance. A central theme of the subject is the intertwining of conceptual and institutional relations within diverse areas of inquiry: cosmology, natural history, physics, mathematics, and medicine.Subjects
Antiquity | Antiquity | Middle Ages | Middle Ages | Renaissance | Renaissance | science | science | cosmology | cosmology | natural history | natural history | physics | physics | mathematics | mathematics | astronomy | astronomy | medicine | medicine | alchemy | alchemy | technology | technology | Plato | Plato | Aristotle | Aristotle | Hippocrates | Hippocrates | Ptolemy | Ptolemy | Euclid | Euclid | Galen | Galen | Vesalius | Vesalius | Copernicus | Copernicus | Kepler | Kepler | Galileo | Galileo | Bacon | Bacon | Descartes | Descartes | Newton | Newton | history | history | culture | culture | scientific revolution | scientific revolution | Latin West | Latin West | western | western | natural science | natural scienceLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-STS.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.282J Introduction to Astronomy (MIT)
Description
Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.Subjects
solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the UniverseLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataCosmology and Creation: From Hawking to Aquinas (10 Mar 2011)
Description
William Carroll, Aquinas Fellow, Blackfriars College, Oxford, gives a talk for the Ian Ramsay Seminar Series on 10th March, 2011. The publication last September of The Grand Design by Stephen Hawking and Leonard Mlodinow has been the occasion for renewed discussion of the relationship between developments in cosmology and the doctrine of creation. Whether one speaks of quantum tunneling from nothing or some version of a multiverse hypothesis it seems easy to conclude, as Hawking and Mlodinow do, that "it is not necessary to invoke God . . . to set the Universe going." Confusion abounds in discussions about the explanatory domain of cosmology and what it means for God to create. The analysis of Thomas Aquinas concerning what, in principle, the natural sciences tell us about the world a Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects
philosophy | aquinas | Hawking | cosmology | philosophy | aquinas | Hawking | cosmology | 2011-03-10License
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://mediapub.it.ox.ac.uk/feeds/129211/audio.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.282J Introduction to Astronomy (MIT)
Description
Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesisSubjects
solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.282J Introduction to Astronomy (MIT)
Description
Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.Subjects
solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the UniverseLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.03SC Physics III: Vibrations and Waves (MIT)
Description
This is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. Students will learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and Big Bang cosmology.Subjects
mechanical vibrations | waves | simple harmonic motion | superposition | forced vibrations | resonance | coupled oscillations | normal modes | vibrations of continuous systems | reflection | refraction | phase | group velocity | Optics | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratings | musical instruments | red sunsets | glories | coronae | rainbows | haloes | X-ray binaries | neutron stars | black holes | big-bang cosmologyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata