Searching for cover : 519 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10.445 Separation Processes for Biochemical Products (MIT) 10.445 Separation Processes for Biochemical Products (MIT)

Description

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years. This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subjects

separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT) HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds. An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | HST.722 | 9.044 | 9.044 | separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering | hearing | hearing | speech | speech | auditory brainstem | auditory brainstem | auditory cortex | auditory cortex | auditory reflexes | auditory reflexes | descending systems | descending systems | human auditory system | human auditory system | speech motor control | speech motor control | auditory learning | auditory learning | cortical representation | cortical representation | dorsal cochlear nucleus | dorsal cochlear nucleus | neural coding | neural coding | thalamo-cortical organization | thalamo-cortical organization | thalamo-cortical processing | thalamo-cortical processing | audio-visual integration | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs (MIT) 6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs (MIT)

Description

Includes audio/video content: AV lectures. 6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs is a class taking a practical approach to proving problems can't be solved efficiently (in polynomial time and assuming standard complexity-theoretic assumptions like P ≠ NP). The class focuses on reductions and techniques for proving problems are computationally hard for a variety of complexity classes. Along the way, the class will create many interesting gadgets, learn many hardness proof styles, explore the connection between games and computation, survey several important problems and complexity classes, and crush hopes and dreams (for fast optimal solutions). Includes audio/video content: AV lectures. 6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs is a class taking a practical approach to proving problems can't be solved efficiently (in polynomial time and assuming standard complexity-theoretic assumptions like P ≠ NP). The class focuses on reductions and techniques for proving problems are computationally hard for a variety of complexity classes. Along the way, the class will create many interesting gadgets, learn many hardness proof styles, explore the connection between games and computation, survey several important problems and complexity classes, and crush hopes and dreams (for fast optimal solutions).

Subjects

NP-completeness | NP-completeness | 3SAT | 3SAT | 3-partition | 3-partition | Hamiltonicity | Hamiltonicity | PSPACE | PSPACE | EXPTIME | EXPTIME | EXPSPACE | EXPSPACE | games | games | puzzles | puzzles | computation | computation | Tetris | Tetris | Nintendo | Nintendo | Super Mario Bros. | Super Mario Bros. | The Legend of Zelda | The Legend of Zelda | Metroid | Metroid | Pokémon | Pokémon | constraint logic | constraint logic | Sudoku | Sudoku | Nikoli | Nikoli | Chess | Chess | Go | Go | Othello | Othello | board games | board games | inapproximability | inapproximability | PCP theorem | PCP theorem | OPT-preserving reduction | OPT-preserving reduction | APX-hardness | APX-hardness | vertex cover | vertex cover | Set-cover hardness | Set-cover hardness | Group Steiner tree | Group Steiner tree | k-dense subgraph | k-dense subgraph | label cover | label cover | Unique Games Conjecture | Unique Games Conjecture | independent set | independent set | fixed-parameter intractability | fixed-parameter intractability | parameter-preserving reduction | parameter-preserving reduction | W hierarchy | W hierarchy | clique-hardness | clique-hardness | 3SUM-hardness | 3SUM-hardness | exponential time hypothesis | exponential time hypothesis | counting problems | counting problems | solution uniqueness | solution uniqueness | game theory | game theory | Existential theory of the reals | Existential theory of the reals | undecidability | undecidability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Happy 8th Birthday, Flickr Commons! 3 days to go (LOC) Happy 8th Birthday, Flickr Commons! 3 days to go (LOC)

Description

Subjects

oregon | oregon | bridges | bridges | rivers | rivers | libraryofcongress | libraryofcongress | willametteriver | willametteriver | coveredbridges | coveredbridges | lanecounty | lanecounty | nationalregisterofhistoricplaces | nationalregisterofhistoricplaces | carolmhighsmith | carolmhighsmith | westfiroregon | westfiroregon | officebridge | officebridge | westfircoveredbridge | westfircoveredbridge | aufderheidenationalscenicbyway | aufderheidenationalscenicbyway | westcascadesnationalscenicbyway | westcascadesnationalscenicbyway | northforkmiddleforkwillametteriver | northforkmiddleforkwillametteriver | howetrussbridges | howetrussbridges | happybirthdayflickrcommons | happybirthdayflickrcommons | westfirlumbercompany | westfirlumbercompany | thebridgesoflanecounty | thebridgesoflanecounty | thecoveredbridgesocietyoforegon | thecoveredbridgesocietyoforegon

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.206J Airline Schedule Planning (MIT) 1.206J Airline Schedule Planning (MIT)

Description

Explores a variety of models and optimization techniques for the solution of airline schedule planning and operations problems. Schedule design, fleet assignment, aircraft maintenance routing, crew scheduling, passenger mix, and other topics are covered. Recent models and algorithms addressing issues of model integration, robustness, and operations recovery are introduced. Modeling and solution techniques designed specifically for large-scale problems, and state-of-the-art applications of these techniques to airline problems are detailed. Explores a variety of models and optimization techniques for the solution of airline schedule planning and operations problems. Schedule design, fleet assignment, aircraft maintenance routing, crew scheduling, passenger mix, and other topics are covered. Recent models and algorithms addressing issues of model integration, robustness, and operations recovery are introduced. Modeling and solution techniques designed specifically for large-scale problems, and state-of-the-art applications of these techniques to airline problems are detailed.

Subjects

Airline Schedule Planning | Airline Schedule Planning | Optimization | Optimization | Operations | Operations | Fleet Assignment | Fleet Assignment | Aircraft Maintenance Routing | Aircraft Maintenance Routing | Crew Scheduling | Crew Scheduling | Passenger Mix | Passenger Mix | Model Integration | Model Integration | Robustness | Robustness | Operations Recovery | Operations Recovery | models | models | optimization techniques | optimization techniques | airline schedule planning problems | airline schedule planning problems | schedule design | schedule design | fleet assignment | fleet assignment | aircraft maintenance routing | aircraft maintenance routing | crew scheduling | crew scheduling | robust planning | robust planning | passenger mix | passenger mix | integrated schedule planning | integrated schedule planning | solution techniques | solution techniques | decomposition | decomposition | Lagrangian relaxation | Lagrangian relaxation | column generation | column generation | partitioning | partitioning | applications | applications | algorithms | algorithms | model integration | model integration | robustness | robustness | operations recovery | operations recovery | airline schedule planning | airline schedule planning | 16.77 | 16.77 | ESD.215 | ESD.215

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.997 Topics in Combinatorial Optimization (MIT) 18.997 Topics in Combinatorial Optimization (MIT)

Description

In this graduate-level course, we will be covering advanced topics in combinatorial optimization. We will start with non-bipartite matchings and cover many results extending the fundamental results of matchings, flows and matroids. The emphasis is on the derivation of purely combinatorial results, including min-max relations, and not so much on the corresponding algorithmic questions of how to find such objects. The intended audience consists of Ph.D. students interested in optimization, combinatorics, or combinatorial algorithms. In this graduate-level course, we will be covering advanced topics in combinatorial optimization. We will start with non-bipartite matchings and cover many results extending the fundamental results of matchings, flows and matroids. The emphasis is on the derivation of purely combinatorial results, including min-max relations, and not so much on the corresponding algorithmic questions of how to find such objects. The intended audience consists of Ph.D. students interested in optimization, combinatorics, or combinatorial algorithms.

Subjects

combinatorial optimization | combinatorial optimization | Ear decompositions | Ear decompositions | Nonbipartite matching | Nonbipartite matching | Gallai-Milgram and Bessy-Thomasse theorems on partitioning/covering graphs by directed paths/cycles | Gallai-Milgram and Bessy-Thomasse theorems on partitioning/covering graphs by directed paths/cycles | Minimization of submodular functions | Minimization of submodular functions | Matroid intersection | Matroid intersection | Polymatroid intersection | Polymatroid intersection | Jump systems | Jump systems | Matroid union | Matroid union | Matroid matching | path matchings | Matroid matching | path matchings | Packing trees and arborescences | Packing trees and arborescences | Packing directed cuts and the Lucchesi-Younger theorem | Packing directed cuts and the Lucchesi-Younger theorem | Submodular flows and the Edmonds-Giles theorem | Submodular flows and the Edmonds-Giles theorem | Graph orientation | Graph orientation | Connectivity tree and connectivity augmentation | Connectivity tree and connectivity augmentation | Multicommodity flows | Multicommodity flows | Connectivity tree | Connectivity tree | connectivity augmentation | connectivity augmentation | Gallai-Milgram Theorem | Gallai-Milgram Theorem | Bessy-Thomasse Theorem | Bessy-Thomasse Theorem | paritioning graphs | paritioning graphs | covering graphs | covering graphs | directed paths | directed paths | directed cycles | directed cycles | matroid matching | matroid matching | path matching | path matching | packing directed cuts | packing directed cuts | Luchessi-Younger Theorem | Luchessi-Younger Theorem | packing trees | packing trees | arborescences | arborescences | submodular flows | submodular flows | Edmonds-Giles Theorem | Edmonds-Giles Theorem

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT) 6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment. 6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | network | computer security | computer security | security | security | cryptography | cryptography | secret-key | secret-key | public-key | public-key | digital signature | digital signature | authentication | authentication | identification | identification | intrusion detection | intrusion detection | virus | virus | operating system | operating system | software | software | protection | protection | electronic mail | electronic mail | email | email | electronic commerce | electronic commerce | electronic cash | electronic cash | firewall | firewall | computer | computer | digital | digital | signature | signature | electronic | electronic | cash | cash | commerce | commerce | mail | mail | operating | operating | system | system | intrustion | intrustion | detection | detection | distributed | distributed | physical | physical | discretionary | discretionary | mandatory | mandatory | access | access | control | control | biometrics | biometrics | information | information | flow | flow | models | models | covert | covert | channels | channels | integrity | integrity | logic | logic | voting | voting | risk | risk | assessment | assessment | secure | secure | web | web | browsers | browsers | architecture | architecture | engineering | engineering | certificates | certificates | multi-user computer systems | multi-user computer systems | distributed computer systems | distributed computer systems | physical security | physical security | discretionary access control | discretionary access control | mandatory access control | mandatory access control | information-flow models | information-flow models | covert channels | covert channels | integrity models | integrity models | elementary cryptography | elementary cryptography | authentication logic;electronic cash | authentication logic;electronic cash | viruses | viruses | firewalls | firewalls | electronic voting | electronic voting | risk assessment | risk assessment | secure web browsers | secure web browsers | network security | network security | architecture engineering | architecture engineering | digital signatures | digital signatures | authentication schemes | authentication schemes | identification schemes | identification schemes | formal models | formal models | secure operating systems | secure operating systems | software protection | software protection | electronic mail security | electronic mail security | World Wide Web | World Wide Web | ecommerce | ecommerce | email security | email security | www | www | payment protocols | payment protocols | authentication logic | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.445 Separation Processes for Biochemical Products (MIT)

Description

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subjects

separation operations | recovery of products from biological processes | membrane filtration | chromatography | centrifugation | cell disruption | extraction | process design | downstream processing | biochemical product recovery | modes of recovery and purification | biochemical engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0010

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0009

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0008

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0010

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0009

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A0007P0008

Description

A cat recovering from anaesthesia

Subjects

svmsvet | cat | blocked | cats | feline | felines | blockedcat | urolithiasis | flutd | felinelowerurinarytractdisease | urolith | uroliths | blockedurethra | urethralspasm | anuria | blockedbladder | a0007 | anaesthesia | anaesthetic | recovery | anaestheticrecovery | catanaesthesia | garecovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs (MIT)

Description

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs is a class taking a practical approach to proving problems can't be solved efficiently (in polynomial time and assuming standard complexity-theoretic assumptions like P ≠ NP). The class focuses on reductions and techniques for proving problems are computationally hard for a variety of complexity classes. Along the way, the class will create many interesting gadgets, learn many hardness proof styles, explore the connection between games and computation, survey several important problems and complexity classes, and crush hopes and dreams (for fast optimal solutions).

Subjects

NP-completeness | 3SAT | 3-partition | Hamiltonicity | PSPACE | EXPTIME | EXPSPACE | games | puzzles | computation | Tetris | Nintendo | Super Mario Bros. | The Legend of Zelda | Metroid | mon | constraint logic | Sudoku | Nikoli | Chess | Go | Othello | board games | inapproximability | PCP theorem | OPT-preserving reduction | APX-hardness | vertex cover | Set-cover hardness | Group Steiner tree | k-dense subgraph | label cover | Unique Games Conjecture | independent set | fixed-parameter intractability | parameter-preserving reduction | W hierarchy | clique-hardness | 3SUM-hardness | exponential time hypothesis | counting problems | solution uniqueness | game theory | Existential theory of the reals | undecidability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | 9.044 | separation operations | recovery of products from biological processes | membrane filtration | chromatography | centrifugation | cell disruption | extraction | process design | downstream processing | biochemical product recovery | modes of recovery and purification | biochemical engineering | hearing | speech | auditory brainstem | auditory cortex | auditory reflexes | descending systems | human auditory system | speech motor control | auditory learning | cortical representation | dorsal cochlear nucleus | neural coding | thalamo-cortical organization | thalamo-cortical processing | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.445 Separation Processes for Biochemical Products (MIT)

Description

This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT's Professional Institute in more recent years.

Subjects

separation operations | recovery of products from biological processes | membrane filtration | chromatography | centrifugation | cell disruption | extraction | process design | downstream processing | biochemical product recovery | modes of recovery and purification | biochemical engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Role of Digital Humanities in a Major Natural Disaster

Description

Paul Millar, CEISMIC Canterbury Earthquakes Digital Archive project leader, discusses the role of digital humanities in developing an international resource to preserve the digital record of the earthquakes' impacts and the long-term process of recovery. In the months since a 7.1 magnitude earthquake hit New Zealand's Canterbury province in September 2010, the region has experience over ten thousand aftershocks, 430 above magnitude 4.0. The most devastating aftershock, a 6.2 earthquake under the centre of Christchurch on 22 February 2011, had one of the highest peak ground acceleration rates ever recorded. This event claimed 185 lives, damaged 80% of the central city beyond repair, and forced the abandonment of 6,000 homes. It was the third costliest insurance event in history. In this t Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

natural disaster | information | disaster recovery | CEISMIC | digital archive | big data | curation | collaboration | preservation | digital humanities | internet | data | earthquake | natural disaster | information | disaster recovery | CEISMIC | digital archive | big data | curation | collaboration | preservation | digital humanities | internet | data | earthquake

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129021/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Role of Digital Humanities in a Major Natural Disaster

Description

Paul Millar, CEISMIC Canterbury Earthquakes Digital Archive project leader, discusses the role of digital humanities in developing an international resource to preserve the digital record of the earthquakes' impacts and the long-term process of recovery. In the months since a 7.1 magnitude earthquake hit New Zealand's Canterbury province in September 2010, the region has experience over ten thousand aftershocks, 430 above magnitude 4.0. The most devastating aftershock, a 6.2 earthquake under the centre of Christchurch on 22 February 2011, had one of the highest peak ground acceleration rates ever recorded. This event claimed 185 lives, damaged 80% of the central city beyond repair, and forced the abandonment of 6,000 homes. It was the third costliest insurance event in history. In this t Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

natural disaster | information | disaster recovery | CEISMIC | digital archive | big data | curation | collaboration | preservation | digital humanities | internet | data | earthquake | natural disaster | information | disaster recovery | CEISMIC | digital archive | big data | curation | collaboration | preservation | digital humanities | internet | data | earthquake

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129021/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

UK Budget and Global Recovery Plans

Description

In Part 5, our experts examine the British economy in light of the recent Budget, and assess whether a global recovery may be on the horizon. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

credit crunch | budget | recession | gordon brown | green shoots | global recovery | credit crunch | budget | recession | gordon brown | green shoots | global recovery

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129190/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.904 Seminar in Topology (MIT) 18.904 Seminar in Topology (MIT)

Description

In this course, students present and discuss the subject matter with faculty guidance. Topics presented by the students include the fundamental group and covering spaces. Instruction and practice in written and oral communication are provided to the students. In this course, students present and discuss the subject matter with faculty guidance. Topics presented by the students include the fundamental group and covering spaces. Instruction and practice in written and oral communication are provided to the students.

Subjects

student lectures | student lectures | seminar | seminar | topology | topology | fundamental group | fundamental group | covering spaces | covering spaces | communication | communication | oral communication | oral communication | mathematical writing | mathematical writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.830 Database Systems (MIT) 6.830 Database Systems (MIT)

Description

This course relies on primary readings from the database community to introduce graduate students to the foundations of database systems, focusing on basics such as the relational algebra and data model, schema normalization, query optimization, and transactions. It is designed for students who have taken MIT course 6.033 (or equivalent); no prior database experience is assumed though students who have taken an undergraduate course in databases are encouraged to attend. Topics related to the engineering and design of database systems, including: data models; database and schema design; schema normalization and integrity constraints; query processing; query optimization and cost estimation; transactions; recovery; concurrency control; isolation and consistency; distributed, parallel, and he This course relies on primary readings from the database community to introduce graduate students to the foundations of database systems, focusing on basics such as the relational algebra and data model, schema normalization, query optimization, and transactions. It is designed for students who have taken MIT course 6.033 (or equivalent); no prior database experience is assumed though students who have taken an undergraduate course in databases are encouraged to attend. Topics related to the engineering and design of database systems, including: data models; database and schema design; schema normalization and integrity constraints; query processing; query optimization and cost estimation; transactions; recovery; concurrency control; isolation and consistency; distributed, parallel, and he

Subjects

engineering and design of database systems | data models | engineering and design of database systems | data models | database and schema design | database and schema design | schema normalization and integrity constraints | schema normalization and integrity constraints | query processing | query processing | query optimization and cost estimation | query optimization and cost estimation | transactions | transactions | recovery | recovery | concurrency control | concurrency control | isolation and consistency | isolation and consistency | distributed | distributed | parallel | parallel | heterogeneous databases | heterogeneous databases | adaptive databases | adaptive databases | trigger systems | trigger systems | pub-sub systems | pub-sub systems | semi structured data and XML querying | semi structured data and XML querying

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.003 The Rise of Modern Science (MIT) STS.003 The Rise of Modern Science (MIT)

Description

This course studies the development of modern science from the seventeenth century to the present, focusing on Europe and the United States. Key questions include: What is science, and how is it done? How are discoveries made and accepted? What is the nature of scientific progress? What is the impact of science on society? What is the impact of society on science? Topics will be drawn from the histories of physics, chemistry, biology, psychology, and medicine.AcknowledgementThis class is based on the one originally designed and taught by Prof. David Jones. His Spring 2005 version can be viewed by following the link under Archived Courses on the right side of this page. This course studies the development of modern science from the seventeenth century to the present, focusing on Europe and the United States. Key questions include: What is science, and how is it done? How are discoveries made and accepted? What is the nature of scientific progress? What is the impact of science on society? What is the impact of society on science? Topics will be drawn from the histories of physics, chemistry, biology, psychology, and medicine.AcknowledgementThis class is based on the one originally designed and taught by Prof. David Jones. His Spring 2005 version can be viewed by following the link under Archived Courses on the right side of this page.

Subjects

technology; | technology; | technology | technology | society | society | modern | modern | seventeenth century | seventeenth century | present | present | discovery | discovery | progress | progress | history | history | physics | physics | chemistry | chemistry | biology | biology | genetics | genetics | geology | geology | medicine | medicine | psychology | psychology | computer science | computer science | race | race | ethics | ethics | scientific revolution | scientific revolution | warfare | warfare | evolution | evolution | Freud | Freud | Einstein | Einstein | Darwin | Darwin | experiment | experiment | eugenics | eugenics | technology and society | technology and society | policy | policy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (SMA 5501) (MIT) 6.033 Computer System Engineering (SMA 5501) (MIT)

Description

This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering). This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering).

Subjects

computer software | computer software | hardware systems | hardware systems | controlling complexity | controlling complexity | strong modularity | strong modularity | client-server design | client-server design | virtual memory | virtual memory | threads | threads | networks | networks | atomicity | atomicity | coordination | coordination | parallel activities | parallel activities | recovery | recovery | reliability | reliability | privacy | privacy | security | security | encryption | encryption | impact on society | impact on society | computer systems | computer systems | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance | frequency-domain performance | stability | stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata