Searching for cystic fibrosis : 8 results found | RSS Feed for this search
7.13 Experimental Microbial Genetics (MIT) 7.13 Experimental Microbial Genetics (MIT)
Description
In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materialsSubjects
microbiology | microbiology | genetics | genetics | pseudomonas | pseudomonas | bacteria | bacteria | genes | genes | pathogen | pathogen | mutagenesis | mutagenesis | PCR | PCR | DNA sequencing | DNA sequencing | enzyme assays | enzyme assays | gene expression | gene expression | molecular genetics | molecular genetics | plasmid manipulation | plasmid manipulation | genetic complementation | genetic complementation | laboratory | laboratory | protocol | protocol | vector | vector | mutant | mutant | cystic fibrosis | cystic fibrosisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced UndSubjects
lethal poison | lethal poison | Ricin | Ricin | Diphtheria | Diphtheria | contagious bacterial disease | contagious bacterial disease | tetracycline | tetracycline | protein synthesis | protein synthesis | drug resistance | drug resistance | protein engineering | protein engineering | cystic fibrosis | cystic fibrosis | muscular dystrophy | muscular dystrophy | ribosome | ribosome | ribosomal proteins | ribosomal proteins | rRNA | rRNA | mRNA | mRNA | tRNA | tRNA | translation factors | translation factors | genetic code | genetic code | E. coli ribosome | E. coli ribosome | prokaryotes | prokaryotes | eukaryotes | eukaryotes | Shiga | Shiga | Diphtheria toxin | Diphtheria toxin | Pseudomonas exotoxin A | Pseudomonas exotoxin A | Chloramphenicol | Chloramphenicol | Aminoglycoside | AminoglycosideLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata20.201 Mechanisms of Drug Actions (MIT) 20.201 Mechanisms of Drug Actions (MIT)
Description
This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets. This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.Subjects
drugs | drugs | medicine | medicine | pharmaceutical | pharmaceutical | pharmacology | pharmacology | toxicology | toxicology | drug actions | drug actions | therapeutics | therapeutics | histology | histology | pathophysiology | pathophysiology | drug therapy | drug therapy | drug transporters | drug transporters | drug metabolism | drug metabolism | drug toxicity | drug toxicity | drug development | drug development | uptake | uptake | transport | transport | case study | case study | biochemistry | biochemistry | Pharmacokinetics | Pharmacokinetics | Pharmacogenetics | Pharmacogenetics | Omeprazole | Omeprazole | antibiotics | antibiotics | Oncology | Oncology | Statins | Statins | Sarilumab | Sarilumab | cystic fibrosis | cystic fibrosisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataCleaning up misfolded proteins
Description
Misfolded proteins can either create the loss of a cellular function, or escape degradation, causing aggregation diseases. Dr John Christianson's research focusses on ER-associated degradation, which is responsible for clearing non-functional and orphan translation products. These processes play a central role in inherited diseases such a cystic fibrosis and various forms of cancer. Dr Christianson's long term goal is to identify novel points of interventions for cancer therapies. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects
cancer | protein folding | cystic fibrosis | cellular | epidemic diseases | cancer | protein folding | cystic fibrosis | cellular | epidemic diseasesLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://mediapub.it.ox.ac.uk/feeds/129165/video.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This topic has a thorough introduction relating the disease to the underlying genetic causes. An interactive element gives information about the effects of cystic fibrosis on different organs of the body. A range of diagnoses and treatment methods are described. Psychosocial effects are detailed. The topic concludes with a page summarising care and management.Subjects
cystic fibrosis | hereditary disease | disease of the lungs | sweat glands | mucus | respiratory infections | autosomal recessive gene | ukoer | ooer | medev | Medicine and Dentistry | Subjects allied to Medicine | Biological Sciences | SAFETY | Learning | Teaching | Institutions | Students | UK EL07 = SCQF 7 | Higher Certificate | NICAT 4 | CQFW 4 | NVQ 4 | Advanced Higher | SVQ 4 | HN Certificate | dentistry | A000License
Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.13 Experimental Microbial Genetics (MIT)
Description
In this class, students engage in independent research projects to probe various aspects of the physiology of the bacterium Pseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materialsSubjects
microbiology | genetics | pseudomonas | bacteria | genes | pathogen | mutagenesis | PCR | DNA sequencing | enzyme assays | gene expression | molecular genetics | plasmid manipulation | genetic complementation | laboratory | protocol | vector | mutant | cystic fibrosisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.344 Antibiotics, Toxins, and Protein Engineering (MIT)
Description
The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced UndSubjects
lethal poison | Ricin | Diphtheria | contagious bacterial disease | tetracycline | protein synthesis | drug resistance | protein engineering | cystic fibrosis | muscular dystrophy | ribosome | ribosomal proteins | rRNA | mRNA | tRNA | translation factors | genetic code | E. coli ribosome | prokaryotes | eukaryotes | Shiga | Diphtheria toxin | Pseudomonas exotoxin A | Chloramphenicol | AminoglycosideLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata20.201 Mechanisms of Drug Actions (MIT)
Description
This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.Subjects
drugs | medicine | pharmaceutical | pharmacology | toxicology | drug actions | therapeutics | histology | pathophysiology | drug therapy | drug transporters | drug metabolism | drug toxicity | drug development | uptake | transport | case study | biochemistry | Pharmacokinetics | Pharmacogenetics | Omeprazole | antibiotics | Oncology | Statins | Sarilumab | cystic fibrosisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata