Searching for degradation : 22 results found | RSS Feed for this search

1

5.08J Biological Chemistry II (MIT) 5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids. This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biochemistry | biological chemistry | biological chemistry | Rasmol | Rasmol | Deep Viewer | Deep Viewer | CHIME | CHIME | BLAST | BLAST | PDB | PDB | macromolecular machines | macromolecular machines | protein folding | protein folding | protein degradation | protein degradation | fatty acid synthases | fatty acid synthases | polyketide synthases | polyketide synthases | non-ribosomal polypeptide synthases | non-ribosomal polypeptide synthases | metal homeostasis | metal homeostasis | biochemical mechanisms | biochemical mechanisms | biochemical pathways | biochemical pathways | macromolecular interactions | macromolecular interactions | ribosome | ribosome | mRNA | mRNA | metabolic networking | metabolic networking | 5.08 | 5.08 | 7.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Cellular Garbage Disposal: Misfolded Proteins in Normal Biology and Human Disease (MIT) 7.346 Cellular Garbage Disposal: Misfolded Proteins in Normal Biology and Human Disease (MIT)

Description

The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their bio The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their bio

Subjects

proteins | proteins | misfolded | misfolded | endoplasmic reticulum | endoplasmic reticulum | ER | ER | protein degradation | protein degradation | cytosol | cytosol | cell cycle | cell cycle | proteasomes | proteasomes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Ubiquitination: The Proteasome and Human Disease (MIT) 7.340 Ubiquitination: The Proteasome and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe

Subjects

ubiquitination | ubiquitination | ubiquitin | ubiquitin | proteasome | proteasome | post-translational mechanisms | post-translational mechanisms | ubiquitin-conjugation system | ubiquitin-conjugation system | neurodegenerative diseases | neurodegenerative diseases | immune response | immune response | cell cycle regulation | cell cycle regulation | apoptosis | apoptosis | signal transduction pathways | signal transduction pathways | tumorigenesis | tumorigenesis | protein degradation | protein degradation | Endoplasmic Reticulum Associated Degradation Pathway | Endoplasmic Reticulum Associated Degradation Pathway | ligases | ligases | translocated proteins | translocated proteins | misfolded proteins | misfolded proteins | trafficking membranes | trafficking membranes | cell cycle control | cell cycle control | programmed cell death | programmed cell death | Huntington's Disease | Huntington's Disease | Von Hippel-Lindau Disease | Von Hippel-Lindau Disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT) 7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNA interference | RNAi | RNAi | RNA | RNA | genetic analysis | genetic analysis | gene therapy | gene therapy | gene products | gene products | gene silencing | gene silencing | gene expression | gene expression | human disease models | human disease models | mRNA | mRNA | genetic interference | genetic interference | short interfering RNA | short interfering RNA | siRNAs | siRNAs | expression vectors | expression vectors | RNA sequences | RNA sequences | nucleotide fragments | nucleotide fragments | microRNA | microRNA | mRNA degradation | mRNA degradation | transgenic mice | transgenic mice | lentivirus | lentivirus | knock-down animals | knock-down animals | tissue specificity | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT) 7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation. Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immunology | immune system | immune system | immune evasion | immune evasion | pathogen | pathogen | effector function | effector function | infections | infections | Human cytomegalovirus | Human cytomegalovirus | Human Immunodeficiency Virus | Human Immunodeficiency Virus | CD4 cells | CD4 cells | CD8 cells | CD8 cells | T cells | T cells | surace receptors | surace receptors | cell lysis | cell lysis | host-pathogen interactions | host-pathogen interactions | host surveillance | host surveillance | antibodies | antibodies | MHC class I | MHC class I | blood-borne pathogens | blood-borne pathogens | macrophages | macrophages | phagocytosis | phagocytosis | endocytosis | endocytosis | degradation | degradation | antigen | antigen | apoptosis | apoptosis | cytokines | cytokines | immune response | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.746 Marine Organic Geochemistry (MIT) 12.746 Marine Organic Geochemistry (MIT)

Description

This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered. This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.

Subjects

Marine | Marine | organic geochemistry | organic geochemistry | distribution | distribution | organic carbon | organic carbon | marine sediments | marine sediments | global | global | molecular-level perspective | molecular-level perspective | mineralization | mineralization | preservation | preservation | OC | OC | major reservoirs | major reservoirs | microbial recycling pathways | microbial recycling pathways | degradation | degradation | anoxia | anoxia | OC burial | OC burial | dissolved | dissolved | sedimentary organic matter | sedimentary organic matter | biological markers | biological markers | oceanography | oceanography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.139 The City in Film (MIT) 11.139 The City in Film (MIT)

Description

Using film as a lens to explore and interpret various aspects of the urban experience in both the U.S. and abroad, this course presents a survey of important developments in urbanism from 1900 to the present day, including changes in technology, bureaucracy, and industrialization; immigration and national identity; race, class, gender, and economic inequality; politics, conformity, and urban anomie; and planning, development, private property, displacement, sprawl, environmental degradation, and suburbanization. Using film as a lens to explore and interpret various aspects of the urban experience in both the U.S. and abroad, this course presents a survey of important developments in urbanism from 1900 to the present day, including changes in technology, bureaucracy, and industrialization; immigration and national identity; race, class, gender, and economic inequality; politics, conformity, and urban anomie; and planning, development, private property, displacement, sprawl, environmental degradation, and suburbanization.

Subjects

cities | cities | urban | urban | urban experience | urban experience | urbanism | urbanism | development | development | technology | technology | bureaucracy | bureaucracy | industrialization | industrialization | immigration | immigration | national identity | national identity | race | race | class | class | gender | gender | economic inequality | economic inequality | politics | politics | conformity | conformity | urban anomie | urban anomie | planning | planning | private property | private property | displacement | displacement | sprawl | sprawl | environmental degradation | environmental degradation | suburbanization | suburbanization | metropolis | metropolis | berlin symphony of a great city | berlin symphony of a great city | the crowd | the crowd | modern times | modern times | ladri di biciclette | ladri di biciclette | bicycle thieves | bicycle thieves | the naked city | the naked city | west side story | west side story | play time | play time | midnight cowboy | midnight cowboy | blade runner | blade runner | do the right thing | do the right thing | london | london | night on earth | night on earth

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and Prevention

Description

This lecture helps to understand the corrosion principles and to select protection methods; it explains how to use aluminium optimally even in aggressive environments. Some knowledge in aluminium metallurgy and general electrochemistry is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | surface treatment | corrosion | acid solutions | neutral solutions | passivation | localized corrosion | environmentally influenced corrosion | pitting corrosion | crevice corrosion | filiform corrosion | biological corrosion | metallurgically influenced corrosion | galvanic corrosion | intergranular corrosion | mechanically assisted degradation | erosion | fretting corrosion | corrosion fatigue | environmentally induced cracking | stress corrosion cracking | SCC | hydrogen embrittlement | corrosion prevention | temper selection | alloy selection | organic coating | inhibitors | anorganic surface treatments | cathodic protection | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Ubiquitination: The Proteasome and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe

Subjects

ubiquitination | ubiquitin | proteasome | post-translational mechanisms | ubiquitin-conjugation system | neurodegenerative diseases | immune response | cell cycle regulation | apoptosis | signal transduction pathways | tumorigenesis | protein degradation | Endoplasmic Reticulum Associated Degradation Pathway | ligases | translocated proteins | misfolded proteins | trafficking membranes | cell cycle control | programmed cell death | Huntington's Disease | Von Hippel-Lindau Disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biological chemistry | Rasmol | Deep Viewer | CHIME | BLAST | PDB | macromolecular machines | protein folding | protein degradation | fatty acid synthases | polyketide synthases | non-ribosomal polypeptide synthases | metal homeostasis | biochemical mechanisms | biochemical pathways | macromolecular interactions | ribosome | mRNA | metabolic networking | 5.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Land Degradation in South Africa

Description

Authors:  Prof Timm Hoffman, Simon Todd, Zolile Ntshona, Stephen Turner This resource contains various chapters and factsheets on land degradation in South Africa. Clicked 1079 times. Last clicked 10/26/2014 - 14:08. Teaching & Learning Context:  <p>South Africa has a long history of desertification research which stretches back to the last century. These resources contain literature on water, soil and veld degradation in both commercial and communal areas of South Africa. Also, the most important socio-economic reasons for land degradation are discussed.</p>

Subjects

Plant Conservation Unit | Science | Text/HTML Webpages | Other | English | Post-secondary | desertification | land degradation | soil | surface water | vegetation

License

http://creativecommons.org/licenses/by-nc/2.5/za/

Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to structural integrity

Description

The I-35W bridge collapse in Minneapolis in August 2007, resulting in at least 13 deaths, illustrates the importance of structural integrity. This unit looks at the investigation that followed the collapse of the Silver Bridge over the Ohio River in 1967 which demonstrates how the study of safe design and the assessment of components and structures under load is of increasing importance in engineering design.

Subjects

bridge | collapse | corrosion | degradation | disaster | dissolution | structural | technology | design | engineering | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mini Project Communication Link Simulation Channels And Noise Lecture

Description

The objective of this module is to have built communication links using existing AM modulation, PSK modulation and demodulation blocks, constructed AM modulators and constructed PSK modulators using operational function blocks based on their mathematical expressions, and conducted simulations of the links and modulators, all in Simulink®.

Subjects

2ele0064 | additive white gaussian noise | channel | communication link simulation | communication systems | communications | demodulation | digital modulation | electronics | engineering | engsc | engscoer | errors performance degradation | expressions | fading and delay of channels | johnson noise | links | mathematical expressions | matlab | measures of system performance | mini project | modulation | noise | operational function blocks | school of electronic communications and electrical | sources of noise | system performance | thermal noise | ukoer | uniofhertsoer | university of hertfordshire | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and Prevention

Description

This lecture helps to understand the corrosion principles and to select protection methods; it explains how to use aluminium optimally even in aggressive environments. Some knowledge in aluminium metallurgy and general electrochemistry is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | surface treatment | corrosion | acid solutions | neutral solutions | passivation | localized corrosion | environmentally influenced corrosion | pitting corrosion | crevice corrosion | filiform corrosion | biological corrosion | metallurgically influenced corrosion | galvanic corrosion | intergranular corrosion | mechanically assisted degradation | erosion | fretting corrosion | corrosion fatigue | environmentally induced cracking | stress corrosion cracking | scc | hydrogen embrittlement | corrosion prevention | temper selection | alloy selection | organic coating | inhibitors | anorganic surface treatments | cathodic protection | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Cellular Garbage Disposal: Misfolded Proteins in Normal Biology and Human Disease (MIT)

Description

The endoplasmic reticulum (ER) orchestrates different cellular processes by which proteins are synthesized, correctly folded, modified and ultimately transported to their final destinations. As part of this crucial biosynthetic process, proteins that are not properly folded and consequently detrimental to normal cellular function are constantly generated. A common signature of many neurodegenerative diseases, including Alzheimer's and Parkinson's, is accumulation and deposition of misfolded proteins that arise when the ability of cells to deal with the burden of misfolded proteins is compromised. In this course, we will explore how the ER quality control machinery ensures that only properly assembled proteins exit the ER while distinguishing between nascent proteins en route to their bio

Subjects

proteins | misfolded | endoplasmic reticulum | ER | protein degradation | cytosol | cell cycle | proteasomes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Ubiquitination: The Proteasome and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe

Subjects

ubiquitination | ubiquitin | proteasome | post-translational mechanisms | ubiquitin-conjugation system | neurodegenerative diseases | immune response | cell cycle regulation | apoptosis | signal transduction pathways | tumorigenesis | protein degradation | Endoplasmic Reticulum Associated Degradation Pathway | ligases | translocated proteins | misfolded proteins | trafficking membranes | cell cycle control | programmed cell death | Huntington's Disease | Von Hippel-Lindau Disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 RNA Interference: A New Tool for Genetic Analysis and Therapeutics (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. To understand and treat any disease with a genetic basis or predisposition, scientists and clinicians need effective ways of manipulating the levels of genes and gene products. Conventional methods for the genetic modification of many experimental organisms are technically demanding and time consuming. Just over 5 years ago, a new mechanism of gene-silencing, termed RNA interference (RNAi), was discovered. In addition to being a fascinating biological process, RNAi provides a revolutionary technology that has a

Subjects

RNA interference | RNAi | RNA | genetic analysis | gene therapy | gene products | gene silencing | gene expression | human disease models | mRNA | genetic interference | short interfering RNA | siRNAs | expression vectors | RNA sequences | nucleotide fragments | microRNA | mRNA degradation | transgenic mice | lentivirus | knock-down animals | tissue specificity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immune system | immune evasion | pathogen | effector function | infections | Human cytomegalovirus | Human Immunodeficiency Virus | CD4 cells | CD8 cells | T cells | surace receptors | cell lysis | host-pathogen interactions | host surveillance | antibodies | MHC class I | blood-borne pathogens | macrophages | phagocytosis | endocytosis | degradation | antigen | apoptosis | cytokines | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.139 The City in Film (MIT)

Description

Using film as a lens to explore and interpret various aspects of the urban experience in both the U.S. and abroad, this course presents a survey of important developments in urbanism from 1900 to the present day, including changes in technology, bureaucracy, and industrialization; immigration and national identity; race, class, gender, and economic inequality; politics, conformity, and urban anomie; and planning, development, private property, displacement, sprawl, environmental degradation, and suburbanization.

Subjects

cities | urban | urban experience | urbanism | development | technology | bureaucracy | industrialization | immigration | national identity | race | class | gender | economic inequality | politics | conformity | urban anomie | planning | private property | displacement | sprawl | environmental degradation | suburbanization | metropolis | berlin symphony of a great city | the crowd | modern times | ladri di biciclette | bicycle thieves | the naked city | west side story | play time | midnight cowboy | blade runner | do the right thing | london | night on earth

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.746 Marine Organic Geochemistry (MIT)

Description

This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.

Subjects

Marine | organic geochemistry | distribution | organic carbon | marine sediments | global | molecular-level perspective | mineralization | preservation | OC | major reservoirs | microbial recycling pathways | degradation | anoxia | OC burial | dissolved | sedimentary organic matter | biological markers | oceanography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biological chemistry | Rasmol | Deep Viewer | CHIME | BLAST | PDB | macromolecular machines | protein folding | protein degradation | fatty acid synthases | polyketide synthases | non-ribosomal polypeptide synthases | metal homeostasis | biochemical mechanisms | biochemical pathways | macromolecular interactions | ribosome | mRNA | metabolic networking | 5.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.07SC Biological Chemistry I (MIT)

Description

This course examines the chemical and physical properties of the cell and its building blocks, with special emphasis on the structures of proteins and principles of catalysis, as well as the chemistry of organic / inorganic cofactors required for chemical transformations within the cell. Topics encompass the basic principles of metabolism and regulation in pathways, including glycolysis, gluconeogenesis, fatty acid synthesis / degradation, pentose phosphate pathway, Krebs cycle and oxidative phosphorylation. Course Format This OCW Scholar course, designed for independent study, is closely modeled on the course taught on the MIT campus. The on-campus course has two types of class sessions: Lectures and recitations. The lectures meet three times each week and recitations meet once a week. I

Subjects

protein structure | enzymes | catalysis | biochemical transformations | organic cofactors | inorganic cofactors | redox cofactors | metabolism | glycolysis | glycogen synthesis | gluconeogenesis | fatty acid synthesis | fatty acid degradation | pentose phosphate pathway | Krebs cycle | oxidative phosphorylation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata