Searching for distance : 80 results found | RSS Feed for this search

1 2 3

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.160 Identification, Estimation, and Learning (MIT) 2.160 Identification, Estimation, and Learning (MIT)

Description

This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation. This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation.

Subjects

system identification; estimation; least squares estimation; Kalman filter; noise dynamics; system representation; function approximation theory; neural nets; radial basis functions; wavelets; volterra expansions; informative data sets; persistent excitation; asymptotic variance; central limit theorem; model structure selection; system order estimate; maximum likelihood; unbiased estimates; Cramer-Rao lower bound; Kullback-Leibler information distance; Akaike?s information criterion; experiment design; model validation. | system identification; estimation; least squares estimation; Kalman filter; noise dynamics; system representation; function approximation theory; neural nets; radial basis functions; wavelets; volterra expansions; informative data sets; persistent excitation; asymptotic variance; central limit theorem; model structure selection; system order estimate; maximum likelihood; unbiased estimates; Cramer-Rao lower bound; Kullback-Leibler information distance; Akaike?s information criterion; experiment design; model validation. | system identification | system identification | estimation | estimation | least squares estimation | least squares estimation | Kalman filter | Kalman filter | noise dynamics | noise dynamics | system representation | system representation | function approximation theory | function approximation theory | neural nets | neural nets | radial basis functions | radial basis functions | wavelets | wavelets | volterra expansions | volterra expansions | informative data sets | informative data sets | persistent excitation | persistent excitation | asymptotic variance | asymptotic variance | central limit theorem | central limit theorem | model structure selection | model structure selection | system order estimate | system order estimate | maximum likelihood | maximum likelihood | unbiased estimates | unbiased estimates | Cramer-Rao lower bound | Cramer-Rao lower bound | Kullback-Leibler information distance | Kullback-Leibler information distance | Akaike?s information criterion | Akaike?s information criterion | experiment design | experiment design | model validation | model validation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Supporting Distance Learners

Description

This is a set of course materials intended for tutors in blended learning or fully online programmes. It takes readers reflectively through what it means to support learners in e-learning environments of a variety of kinds –both at a distance, and in conventional contact tuition environments that are web supported. The materials have been designed for learning in developing contexts in which bandwidth is often a challenge.

Subjects

ukoer learner support tutors distance education e-learning web 2.0 constructivism distance learning facilitating asynchronous learning learner support lifelong distance learner mobile learning online learning open learning social presence tutorial using synchronous communication tools web conferencing web-based learning | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.714J Technologies for Creative Learning (MIT) MAS.714J Technologies for Creative Learning (MIT)

Description

This course explores how new technologies can help people learn new things in new ways. It analyzes principles and strategies underlying the design of innovative educational technologies and creative learning environments, drawing on specific case studies such as the LEGO Programmable Brick and Computer Clubhouse after-school learning centers. The course will include hands-on activities, analysis of learning experiences, and design of new tools and activities. This course explores how new technologies can help people learn new things in new ways. It analyzes principles and strategies underlying the design of innovative educational technologies and creative learning environments, drawing on specific case studies such as the LEGO Programmable Brick and Computer Clubhouse after-school learning centers. The course will include hands-on activities, analysis of learning experiences, and design of new tools and activities.

Subjects

learning | learning | e-learning | e-learning | distance learning | distance learning | educational technology | educational technology | learning environments | learning environments | school | school | pedagogy | pedagogy | instruction | instruction | method | method | education | education | teaching | teaching | teachers | teachers | constructionism | constructionism | toys | toys | innovation | innovation | communities | communities | mentorship | mentorship | play | play | MAS.714 | MAS.714 | STS.445 | STS.445

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT) PE.730 Archery (MIT)

Description

Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition. Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | archery | bow | bow | arrow | arrow | stringing | stringing | tourney | tourney | technique | technique | release | release | aim | aim | firing | firing | grouping | grouping | clusters | clusters | safety | safety | stretching | stretching | video | video | high speed video | high speed video | stance | stance | sighting | sighting | speed shooting | speed shooting | balance | balance | musculature | musculature | tournaments | tournaments | distance | distance | accuracy | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.05 Principles of Inorganic Chemistry III (MIT) 5.05 Principles of Inorganic Chemistry III (MIT)

Description

This course covers the principles of main group (s and p block) element chemistry with an emphasis on synthesis, structure, bonding, and reaction mechanisms. This course covers the principles of main group (s and p block) element chemistry with an emphasis on synthesis, structure, bonding, and reaction mechanisms.

Subjects

inorganic chemistry | inorganic chemistry | main group element chemistry | main group element chemistry | chemical synthesis | chemical synthesis | chemical structure | chemical structure | bonding | bonding | reaction mechanisms | reaction mechanisms | aluminum chemistry | aluminum chemistry | s block | s block | p block | p block | interatomic distance | interatomic distance | lewis structure | lewis structure | partitions space | partitions space | Density Functional Theory | Density Functional Theory | NMR spectroscopy | NMR spectroscopy | spin-orbit coupling | spin-orbit coupling | spin-spin coupling | spin-spin coupling | relativistic effects | relativistic effects | spin-orbit effects | spin-orbit effects | noble gas chemistry | noble gas chemistry | chemical reaction products | chemical reaction products

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.006 Introduction to Algorithms (MIT) 6.006 Introduction to Algorithms (MIT)

Description

This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems. This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems.

Subjects

algorithms | algorithms | python | python | python cost model | python cost model | binary search trees | binary search trees | hashing | hashing | sorting | sorting | searching | searching | shortest paths | shortest paths | dynamic programming | dynamic programming | numerics | numerics | document distance | document distance | longest common substring | longest common substring | dijkstra | dijkstra | fibonacci | fibonacci | image resizing | image resizing | chaining | chaining | hash functions | hash functions | priority queues | priority queues | breadth first search | breadth first search | depth first search | depth first search | memoization | memoization | divide and conquer | divide and conquer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.902 Astrophysics II (MIT) 8.902 Astrophysics II (MIT)

Description

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation. This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Subjects

Galactic dynamics | Galactic dynamics | potential theory | potential theory | orbits | orbits | collisionless Boltzmann equations | collisionless Boltzmann equations | Galaxy interactions | Galaxy interactions | Groups and clusters | Groups and clusters | dark matter | dark matter | Intergalactic medium | Intergalactic medium | x-ray clusters | x-ray clusters | Active galactic nuclei | Active galactic nuclei | unified models | unified models | black hole accretion | black hole accretion | radio and optical jets | radio and optical jets | Homogeneity and isotropy | Homogeneity and isotropy | redshift | redshift | galaxy distance ladder | galaxy distance ladder | Newtonian cosmology | Newtonian cosmology | Roberston-Walker models and cosmography | Roberston-Walker models and cosmography | Early universe | Early universe | primordial nucleosynthesis | primordial nucleosynthesis | recombination | recombination | Cosmic microwave background radiation | Cosmic microwave background radiation | Large-scale structure | Large-scale structure | galaxy formation | galaxy formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.385 Nonlinear Econometric Analysis (MIT) 14.385 Nonlinear Econometric Analysis (MIT)

Description

This course presents micro-econometric models, including large sample theory for estimation and hypothesis testing, generalized method of moments (GMM), estimation of censored and truncated specifications, quantile regression, structural estimation, nonparametric and semiparametric estimation, treatment effects, panel data, bootstrapping, simulation methods, and Bayesian methods. The methods are illustrated with economic applications. This course presents micro-econometric models, including large sample theory for estimation and hypothesis testing, generalized method of moments (GMM), estimation of censored and truncated specifications, quantile regression, structural estimation, nonparametric and semiparametric estimation, treatment effects, panel data, bootstrapping, simulation methods, and Bayesian methods. The methods are illustrated with economic applications.

Subjects

nonlinear | nonlinear | econometric | econometric | analysis | analysis | generalized method of moments | generalized method of moments | GMM | GMM | maximum likelihood estimation | maximum likelihood estimation | MLE | MLE | minimum distance | minimum distance | extremum | extremum | large sample theory | large sample theory | asymptotic theory | asymptotic theory | discrete choice | discrete choice | censoring | censoring | sample selection | sample selection | bootstrap | bootstrap | subsampling | subsampling | finite-sample methods | finite-sample methods | quantile regression | quantile regression | QR | QR | distributional methods | distributional methods | Bayesian methods | Bayesian methods | quasi-Bayesian methods | quasi-Bayesian methods | bounds | bounds | partial identification | partial identification | weak instruments | weak instruments | many instruments | many instruments | instrumental variables | instrumental variables | nonparametric estimation | nonparametric estimation | semiparametric estimation | semiparametric estimation | treatment effects | treatment effects | nonlinear models | nonlinear models | panel data | panel data | economic modeling | economic modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.020 Competition in Telecommunications (MIT) 15.020 Competition in Telecommunications (MIT)

Description

Competition in Telecommunications provides an introduction to the economics, business strategies, and technology of telecommunications markets. This includes markets for wireless communications, local and long-distance services, and customer equipment. The convergence of computers, cable TV and telecommunications and the competitive emergence of the Internet are covered in depth. A number of speakers from leading companies in the industry will give course lectures. Competition in Telecommunications provides an introduction to the economics, business strategies, and technology of telecommunications markets. This includes markets for wireless communications, local and long-distance services, and customer equipment. The convergence of computers, cable TV and telecommunications and the competitive emergence of the Internet are covered in depth. A number of speakers from leading companies in the industry will give course lectures.

Subjects

telephone | telephone | Internet | Internet | communications | communications | economics | economics | business strategy | business strategy | technologies | technologies | wireless | wireless | convergence | convergence | cable television | cable television | governmental regulations | governmental regulations | public policy | public policy | evolution of technology | evolution of technology | computer hardware and software | computer hardware and software | VoIP | VoIP | data and voice traffic | data and voice traffic | network integration | network integration | deregulation | deregulation | cell phones | cell phones | WiFi | WiFi | Internet commerce | Internet commerce | spectrum auctions | spectrum auctions | telecommunications markets | telecommunications markets | competition | competition | wireless communications | wireless communications | long-distance services | long-distance services | computers | computers | satellite TV | satellite TV | telecommunications industry | telecommunications industry | regulation | regulation | technology | technology | market structures | market structures | data traffic | data traffic | voice traffic | voice traffic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.950 Differential Geometry (MIT) 18.950 Differential Geometry (MIT)

Description

This course is an introduction to differential geometry. The course itself is mathematically rigorous, but still emphasizes concrete aspects of geometry, centered on the notion of curvature. This course is an introduction to differential geometry. The course itself is mathematically rigorous, but still emphasizes concrete aspects of geometry, centered on the notion of curvature.

Subjects

differential geometry | differential geometry | geometry of plane curves | geometry of plane curves | hypersurfaces | hypersurfaces | geometry of lengths and distances | geometry of lengths and distances

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Developing Distance Learning Material

Description

This paper is intended as a practical guide to help with writing Distance Learning material. This paper considers: Topic One – Introduction and an approach to writing Distance Learning Material. Topic Two – Content of the material Topic Three – Achieving the Learning Outcomes. Topic Four - Some tips on style and aspects of authoring the material. By following guidelines it will help to. • Speed up the writing process • Have a consistent style • Help the students Most of the material in this guide is based on experience from developing DL material for the MSc Facilities Management, the MSc Building Surveying, and as an Associate Lecturer for the Open University on undergraduate courses. It was originally written for staff tutoring on the MSc Facilities Management. Examples used

Subjects

ukoer | distance learning | curriculum design | learning outcomes | distance learners | Education | Materials Education | X000 | EDUCATION / TRAINING / TEACHING | G

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Developing Distance Learning Materials - draft course handbook template

Description

This draft course handbook is the development of a handbook which is intended to provide students with essential information relating to their programme of study, including: general course information, University information, information about the course, the student calendar, information about assessment and academic regulations, help, advice and other information. This has a particular focus for distance learners.

Subjects

ukoer | course handbook | course design | distance learning | distance learners | Education | X000 | EDUCATION / TRAINING / TEACHING | G

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The lifelong distance learner

Description

In this unit, tutors are invited to consider what their learners may find easy or difficult about learning at a distance using technologies that may be new to them, and what the tutors’ role is in supporting them.

Subjects

ukoer | distance learning | learning at a distance | leicester university | otter | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Supporting learning

Description

In recent years, the concept of constructivism has helped many educators to go beyond traditional rote learning techniques, and to engage their learners more fully in the learning process. In this unit, we take a bird's-eye look at the many ways in which you can support distance learners in their learning from a constructivist perspective.

Subjects

ukoer | supporting learning | distance learning | constructivism | supporting distance learners | leicester university | otter | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.160 Identification, Estimation, and Learning (MIT)

Description

This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation.

Subjects

system identification; estimation; least squares estimation; Kalman filter; noise dynamics; system representation; function approximation theory; neural nets; radial basis functions; wavelets; volterra expansions; informative data sets; persistent excitation; asymptotic variance; central limit theorem; model structure selection; system order estimate; maximum likelihood; unbiased estimates; Cramer-Rao lower bound; Kullback-Leibler information distance; Akaike?s information criterion; experiment design; model validation. | system identification | estimation | least squares estimation | Kalman filter | noise dynamics | system representation | function approximation theory | neural nets | radial basis functions | wavelets | volterra expansions | informative data sets | persistent excitation | asymptotic variance | central limit theorem | model structure selection | system order estimate | maximum likelihood | unbiased estimates | Cramer-Rao lower bound | Kullback-Leibler information distance | Akaike?s information criterion | experiment design | model validation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pretvarjanje mer (mm, cm, dm) Unit Conversion (mm,cm,dm)

Description

Pretvarjanje merskih enot za razdaljo. Conversion between different units of measurement for length.

Subjects

znanstvene vede | sciences | matematika | mathematics | merska enota | unit of measurement | razdalja | distance | dolžina | length | merjenje | measuring

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pretvarjanje mer (mm, cm, dm) Unit Conversion (mm,cm,dm)

Description

Pretvarjanje merskih enot za razdaljo. Conversion between different units of measurement for length.

Subjects

znanstvene vede | sciences | matematika | mathematics | merska enota | unit of measurement | razdalja | distance | dolžina | length | pretvorba | conversion

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pretvarjanje mer (dm, m, km) Unit Conversion (dm,m,km)

Description

Pretvarjanje merskih enot za razdaljo. Conversion between different units of measurement for length.

Subjects

znanstvene vede | sciences | matematika | mathematics | merska enota | unit of measurement | razdalja | distance | pretvorba | conversion

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Pretvarjanje mer (dm, m, km) Unit conversion (dm,m,km)

Description

Pretvarjanje merskih enot za razdaljo. Conversion between different units of measurement for length.

Subjects

znanstvene vede | sciences | matematika | mathematics | merska enota | unit of measurement | razdalja | distance | pretvorba | conversion

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3502: Impact Extrusion Processes

Description

This lecture describes the impact extrusion processes as well as the forces and deformations acting on the tools and work-piece in order to give insight into the relation between part design, process and tooling. Basic knowledge about the formability of metals and background in mechanical engineering is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | impact extrusion | quasi-stationary material flow | deformation | force-distance curve | stresses | non-stationary material flow | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata