Searching for distribution : 332 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13

18.440 Probability and Random Variables (MIT) 18.440 Probability and Random Variables (MIT)

Description

This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem. This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.

Subjects

Probability spaces | Probability spaces | random variables | random variables | distribution functions | distribution functions | Binomial | Binomial | geometric | geometric | hypergeometric | hypergeometric | Poisson distributions | Poisson distributions | Uniform | Uniform | exponential | exponential | normal | normal | gamma and beta distributions | gamma and beta distributions | Conditional probability | Conditional probability | Bayes theorem | Bayes theorem | joint distributions | joint distributions | Chebyshev inequality | Chebyshev inequality | law of large numbers | law of large numbers | and central limit theorem. | and central limit theorem.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.440 Probability and Random Variables (MIT) 18.440 Probability and Random Variables (MIT)

Description

This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem. This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.

Subjects

Probability spaces | Probability spaces | random variables | random variables | distribution functions | distribution functions | Binomial | Binomial | geometric | geometric | hypergeometric | hypergeometric | Poisson distributions | Poisson distributions | Uniform | Uniform | exponential | exponential | normal | normal | gamma and beta distributions | gamma and beta distributions | Conditional probability | Conditional probability | Bayes theorem | Bayes theorem | joint distributions | joint distributions | Chebyshev inequality | Chebyshev inequality | law of large numbers | law of large numbers | central limit theorem | central limit theorem

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.440 Probability and Random Variables (MIT) 18.440 Probability and Random Variables (MIT)

Description

This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem. This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.

Subjects

Probability spaces | Probability spaces | random variables | random variables | distribution functions | distribution functions | Binomial | Binomial | geometric | geometric | hypergeometric | hypergeometric | Poisson distributions | Poisson distributions | Uniform | Uniform | exponential | exponential | normal | normal | gamma and beta distributions | gamma and beta distributions | Conditional probability | Conditional probability | Bayes theorem | Bayes theorem | joint distributions | joint distributions | Chebyshev inequality | Chebyshev inequality | law of large numbers | law of large numbers | And central limit theorem | And central limit theorem

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.440 Probability and Random Variables (MIT) 18.440 Probability and Random Variables (MIT)

Description

This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem. This course introduces students to probability and random variables. Topics include distribution functions, binomial, geometric, hypergeometric, and Poisson distributions. The other topics covered are uniform, exponential, normal, gamma and beta distributions; conditional probability; Bayes theorem; joint distributions; Chebyshev inequality; law of large numbers; and central limit theorem.

Subjects

Probability spaces | Probability spaces | random variables | random variables | distribution functions | distribution functions | Binomial | Binomial | geometric | geometric | hypergeometric | hypergeometric | Poisson distributions | Poisson distributions | Uniform | Uniform | exponential | exponential | normal | normal | gamma and beta distributions | gamma and beta distributions | Conditional probability | Conditional probability | Bayes theorem | Bayes theorem | joint distributions | joint distributions | Chebyshev inequality | Chebyshev inequality | law of large numbers | law of large numbers | and central limit theorem | and central limit theorem

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.220 Quantitative Reasoning and Statistical Method for Planning I (MIT) 11.220 Quantitative Reasoning and Statistical Method for Planning I (MIT)

Description

This course develops logical, empirically based arguments using statistical techniques and analytic methods. It covers elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation. Emphasis is placed on the use and limitations of analytical techniques in planning practice. This course is required for and restricted to first-year Master in City Planning students. This course develops logical, empirically based arguments using statistical techniques and analytic methods. It covers elementary statistics, probability, and other types of quantitative reasoning useful for description, estimation, comparison, and explanation. Emphasis is placed on the use and limitations of analytical techniques in planning practice. This course is required for and restricted to first-year Master in City Planning students.

Subjects

statistics | statistics | statistical methods | statistical methods | quantitative research | quantitative research | argument | argument | measurement | measurement | research design | research design | frequency distribution | frequency distribution | histogram | histogram | stemplot | stemplot | boxplot | boxplot | dispersion | dispersion | probability | probability | normal distribution | normal distribution | binomial distribution | binomial distribution | sampling | sampling | confidence interval | confidence interval | significance | significance | correlation | correlation | regression | regression

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT) 8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT)

Description

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.

Subjects

Thermodynamics | Thermodynamics | entropy. mehanics | entropy. mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions; lattice vibrations | grand canonical distributions; lattice vibrations | ideal gas | ideal gas | photon gas. | photon gas. | quantum statistical mechanics; Fermi systems | quantum statistical mechanics; Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory. | mean-field theory.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is  a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas. This course is  a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

neutron distributions | neutron distributions | fission | fission | fusion | fusion | RST | RST | Particle simulation methods | Particle simulation methods | complex processes | complex processes | numerical solutions of equations | numerical solutions of equations | basic concepts | basic concepts | underlying scientific connections | underlying scientific connections | current research areas | current research areas | angular distributions | angular distributions | energy distributions | energy distributions | single collision | single collision | multiple collisions | multiple collisions | neutron interactions | neutron interactions | elastic scattering | elastic scattering | inelastic scattering | inelastic scattering | MCNP | MCNP | Monte Carlo | Monte Carlo | molecular dynamics | molecular dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.333 Statistical Mechanics (MIT) 8.333 Statistical Mechanics (MIT)

Description

8.333 is the first course in a two-semester sequence on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, micro canonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory. 8.333 is the first course in a two-semester sequence on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, micro canonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory.

Subjects

hermodynamics | hermodynamics | entropy | entropy | mehanics | mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions | grand canonical distributions | lattice vibrations | lattice vibrations | ideal gas | ideal gas | photon gas | photon gas | quantum statistical mechanics | quantum statistical mechanics | Fermi systems | Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory | mean-field theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.060 Data, Models, and Decisions (MIT) 15.060 Data, Models, and Decisions (MIT)

Description

This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice. This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice.

Subjects

decision analysis | decision analysis | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | normal probability distribution | normal probability distribution | statistical sampling | statistical sampling | regression models | regression models | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | discrete optimization | discrete optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-entrepreneurship.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.060 Data, Models, and Decisions (MIT) 15.060 Data, Models, and Decisions (MIT)

Description

This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice. This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice.

Subjects

decision analysis | decision analysis | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | normal probability distribution | normal probability distribution | statistical sampling | statistical sampling | regression models | regression models | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | discrete optimization | discrete optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.060 Data, Models, and Decisions (MIT) 15.060 Data, Models, and Decisions (MIT)

Description

This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice. This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice.

Subjects

decision analysis | decision analysis | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | normal probability distribution | normal probability distribution | statistical sampling | statistical sampling | regression models | regression models | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | discrete optimization | discrete optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT) 8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT)

Description

Includes audio/video content: AV lectures. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: Thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Includes audio/video content: AV lectures. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: Thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.

Subjects

thermodynamics | thermodynamics | entropy | entropy | mehanics | mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions | grand canonical distributions | lattice vibrations | lattice vibrations | ideal gas | ideal gas | photon gas | photon gas | quantum statistical mechanics | quantum statistical mechanics | Fermi systems | Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory | mean-field theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.05 Introduction to Probability and Statistics (MIT) 18.05 Introduction to Probability and Statistics (MIT)

Description

Includes audio/video content: AV selected lectures. This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression. The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams. Includes audio/video content: AV selected lectures. This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression. The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams.

Subjects

probability | probability | statistics | statistics | models | models | combinatorics | combinatorics | expectation | expectation | variance | variance | random variable | random variable | discrete probability distribution | discrete probability distribution | continuous probability distribution | continuous probability distribution | Bayes | Bayes | distribution | distribution | statistical estimation | statistical estimation | statistical testing | statistical testing | confidence interval | confidence interval | linear regression | linear regression | normal | normal | significance testing | significance testing | bootstrapping | bootstrapping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.060 Data, Models, and Decisions (MIT) 15.060 Data, Models, and Decisions (MIT)

Description

This course is designed to introduce first-year Sloan MBA students to the fundamental techniques of using data. In particular, the course focuses on various ways of modeling, or thinking structurally about decision problems in order to make informed management decisions. This course is designed to introduce first-year Sloan MBA students to the fundamental techniques of using data. In particular, the course focuses on various ways of modeling, or thinking structurally about decision problems in order to make informed management decisions.

Subjects

decision analysis | decision analysis | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | normal probability distribution | normal probability distribution | statistical sampling | statistical sampling | regression models | regression models | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | discrete optimization | discrete optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.060 Data, Models, and Decisions (MIT) 15.060 Data, Models, and Decisions (MIT)

Description

This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice. This course is designed to introduce first-year MBA students to the fundamental quantitative techniques of using data to make informed management decisions. In particular, the course focuses on various ways of modeling, or thinking structurally about, decision problems in order to enhance decision-making skills. Topics include decision analysis, probability, random variables, statistical estimation, regression, simulation, linear optimization, as well as nonlinear and discrete optimization. Management cases are used extensively to illustrate the practical use of modeling tools to improve the management practice.

Subjects

decision analysis | decision analysis | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | normal probability distribution | normal probability distribution | statistical sampling | statistical sampling | regression models | regression models | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | discrete optimization | discrete optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT) 8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT)

Description

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.

Subjects

Thermodynamics | Thermodynamics | entropy. mehanics | entropy. mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions; lattice vibrations | grand canonical distributions; lattice vibrations | ideal gas | ideal gas | photon gas. | photon gas. | quantum statistical mechanics; Fermi systems | quantum statistical mechanics; Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory. | mean-field theory.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.018J Fundamentals of Ecology (MIT) 1.018J Fundamentals of Ecology (MIT)

Description

This is a basic subject in ecology that seeks to improve the understanding of the flow of energy and materials through ecosystems and the regulation of the distribution and abundance of organisms. The course covers productivity and biogeochemical cycles in ecosystems, trophic dynamics, community structure and stability, competition and predation, evolution and natural selection, population growth and physiological ecology. There is particular emphasis placed on aquatic systems. This is a basic subject in ecology that seeks to improve the understanding of the flow of energy and materials through ecosystems and the regulation of the distribution and abundance of organisms. The course covers productivity and biogeochemical cycles in ecosystems, trophic dynamics, community structure and stability, competition and predation, evolution and natural selection, population growth and physiological ecology. There is particular emphasis placed on aquatic systems.

Subjects

ecology | ecology | flow of energy | flow of energy | flow of materials | flow of materials | ecosystems | ecosystems | distribution and abundance of organisms | distribution and abundance of organisms | productivity cycles | productivity cycles | biogeochemical cycles | biogeochemical cycles | trophic dynamics | trophic dynamics | community structure and stability | community structure and stability | competition and predation | competition and predation | evolution and natural selection | evolution and natural selection | population growth | population growth | physiological ecology | physiological ecology | aquatic systems | aquatic systems | community structure | community structure | community stability | community stability | competition | competition | predation | predation | distribution | distribution | organisms | organisms | evolution | evolution | natural selection | natural selection | energy flow | energy flow | 1.018 | 1.018 | 7.30 | 7.30

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)

Description

This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering. This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering.

Subjects

statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.08 Statistical Physics II (MIT) 8.08 Statistical Physics II (MIT)

Description

Probability distributions for classical and quantum systems. Microcanonical, canonical, and grand canonical partition-functions and associated thermodynamic potentials. Conditions of thermodynamic equilibrium for homogenous and heterogenous systems. Applications: non-interacting Bose and Fermi gases; mean field theories for real gases, binary mixtures, magnetic systems, polymer solutions; phase and reaction equilibria, critical phenomena. Fluctuations, correlation functions and susceptibilities, and Kubo formulae. Evolution of distribution functions: Boltzmann and Smoluchowski equations. Probability distributions for classical and quantum systems. Microcanonical, canonical, and grand canonical partition-functions and associated thermodynamic potentials. Conditions of thermodynamic equilibrium for homogenous and heterogenous systems. Applications: non-interacting Bose and Fermi gases; mean field theories for real gases, binary mixtures, magnetic systems, polymer solutions; phase and reaction equilibria, critical phenomena. Fluctuations, correlation functions and susceptibilities, and Kubo formulae. Evolution of distribution functions: Boltzmann and Smoluchowski equations.

Subjects

Probability distributions | Probability distributions | quantum systems | quantum systems | Microcanonical | Microcanonical | canonical | canonical | grand canonical partition-functions | grand canonical partition-functions | thermodynamic potentials | thermodynamic potentials | Conditions of thermodynamic equilibrium for homogenous and heterogenous systems | Conditions of thermodynamic equilibrium for homogenous and heterogenous systems | non-interacting Bose and Fermi gases | non-interacting Bose and Fermi gases | mean field theories for real gases | mean field theories for real gases | binary mixtures | binary mixtures | magnetic systems | magnetic systems | polymer solutions | polymer solutions | phase and reaction equilibria | phase and reaction equilibria | critical phenomena | critical phenomena | Fluctuations | Fluctuations | correlation functions and susceptibilities | correlation functions and susceptibilities | Kubo formulae | Kubo formulae | Evolution of distribution functions | Evolution of distribution functions | Boltzmann and Smoluchowski equations | Boltzmann and Smoluchowski equations | correlation functions | correlation functions | susceptibilities | susceptibilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)

Description

This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life. This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life.

Subjects

fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayes theorem | Bayes theorem | total probability theorem | total probability theorem | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.151 Probability and Statistics in Engineering (MIT) 1.151 Probability and Statistics in Engineering (MIT)

Description

This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems. This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.

Subjects

fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.017 Computing and Data Analysis for Environmental Applications (MIT) 1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm

Subjects

probability | probability | statistics | statistics | events | events | random variables | random variables | univariate distributions | univariate distributions | multivariate distributions | multivariate distributions | uncertainty propagation | uncertainty propagation | Bernoulli trials | Bernoulli trials | Poisson processed | Poisson processed | conditional probability | conditional probability | Bayes rule | Bayes rule | random sampling | random sampling | point estimation | point estimation | interval estimation | interval estimation | hypothesis testing | hypothesis testing | analysis of variance | analysis of variance | linear regression | linear regression | computational analysis | computational analysis | data analysis | data analysis | environmental engineering | environmental engineering | applications | applications | MATLAB | MATLAB | numerical modeling | numerical modeling | probabilistic concepts | probabilistic concepts | statistical methods | statistical methods | field data | field data | laboratory data | laboratory data | numerical techniques | numerical techniques | Monte Carlo simulation | Monte Carlo simulation | variability | variability | sampling | sampling | data sets | data sets | computer | computer | uncertainty | uncertainty | interpretation | interpretation | quantitative data | quantitative data

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.374 Analysis and Design of Digital Integrated Circuits (MIT) 6.374 Analysis and Design of Digital Integrated Circuits (MIT)

Description

6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs. 6.374 examines the device and circuit level optimization of digital building blocks. Topics covered include: MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, circuits (sense amplifiers) and devices; testing of integrated circuits. The course employs extensive use of circuit layout and SPICE in design projects and software labs.

Subjects

digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | device | circuit | digital | MOS | digital integrated circuit | digital integrated circuit | device | device | circuit | circuit | digital | digital | MOS | MOS | Deep Sub-Micron effects | Deep Sub-Micron effects | circuit design | circuit design | logic | logic | interconnect models; parasitics | interconnect models; parasitics | device sizing | device sizing | timing | timing | clock skew | clock skew | jitter; clock distribution techniques | jitter; clock distribution techniques | memory architectures | memory architectures | circuits | circuits | sense amplifiers | sense amplifiers | SPICE | SPICE | HSPICE | HSPICE | Magic | Magic | Nanosim | Nanosim | Avanwaves | Avanwaves | device level optimization | device level optimization | interconnect models | interconnect models | parasitics | parasitics | jitter | jitter | clock distribution techniques | clock distribution techniques | CMOS inverter | CMOS inverter | combinational logic | combinational logic | sequential circuits | sequential circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.08 Statistical Physics II (MIT) 8.08 Statistical Physics II (MIT)

Description

This course covers probability distributions for classical and quantum systems. Topics include: Microcanonical, canonical, and grand canonical partition-functions and associated thermodynamic potentials. Also discussed are conditions of thermodynamic equilibrium for homogenous and heterogenous systems. The course follows 8.044, Statistical Physics I, and is second in this series of undergraduate Statistical Physics courses. This course covers probability distributions for classical and quantum systems. Topics include: Microcanonical, canonical, and grand canonical partition-functions and associated thermodynamic potentials. Also discussed are conditions of thermodynamic equilibrium for homogenous and heterogenous systems. The course follows 8.044, Statistical Physics I, and is second in this series of undergraduate Statistical Physics courses.

Subjects

Probability distributions | Probability distributions | quantum systems | quantum systems | Microcanonical | canonical | and grand canonical partition-functions | Microcanonical | canonical | and grand canonical partition-functions | thermodynamic potentials | thermodynamic potentials | Conditions of thermodynamic equilibrium for homogenous and heterogenous systems | Conditions of thermodynamic equilibrium for homogenous and heterogenous systems | non-interacting Bose and Fermi gases | non-interacting Bose and Fermi gases | mean field theories for real gases | mean field theories for real gases | binary mixtures | binary mixtures | magnetic systems | magnetic systems | polymer solutions | polymer solutions | phase and reaction equilibria | phase and reaction equilibria | critical phenomena | critical phenomena | Fluctuations | Fluctuations | correlation functions and susceptibilities | and Kubo formulae | correlation functions and susceptibilities | and Kubo formulae | Evolution of distribution functions: Boltzmann and Smoluchowski equations | Evolution of distribution functions: Boltzmann and Smoluchowski equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.30 Introduction to Statistical Methods in Economics (MIT) 14.30 Introduction to Statistical Methods in Economics (MIT)

Description

This course will provide a solid foundation in probability and statistics for economists and other social scientists. We will emphasize topics needed for further study of econometrics and provide basic preparation for 14.32. Topics include elements of probability theory, sampling theory, statistical estimation, and hypothesis testing. This course will provide a solid foundation in probability and statistics for economists and other social scientists. We will emphasize topics needed for further study of econometrics and provide basic preparation for 14.32. Topics include elements of probability theory, sampling theory, statistical estimation, and hypothesis testing.

Subjects

statistics | statistics | economic applications | economic applications | probability theory | probability theory | sampling theory | sampling theory | statistical estimation | statistical estimation | regression analysis | regression analysis | hypothesis testing | hypothesis testing | Elementary econometrics | Elementary econometrics | statistical tools | statistical tools | economic data | economic data | economics | economics | statistical | statistical | probability distribution function | probability distribution function | cumulative distribution function | cumulative distribution function | normal | normal | Student's t | Student's t | chi-squared | chi-squared | central limit theorem | central limit theorem | law of large numbers | law of large numbers | Bayes theorem | Bayes theorem

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata