Searching for divide and conquer : 12 results found | RSS Feed for this search

Description

This course covers concepts of computation used in analysis of engineering systems. It includes the following topics: data structures, relational database representations of engineering data, algorithms for the solution and optimization of engineering system designs (greedy, dynamic programming, branch and bound, graph algorithms, nonlinear optimization), and introduction to complexity analysis. Object-oriented, efficient implementations of algorithms are emphasized. This course covers concepts of computation used in analysis of engineering systems. It includes the following topics: data structures, relational database representations of engineering data, algorithms for the solution and optimization of engineering system designs (greedy, dynamic programming, branch and bound, graph algorithms, nonlinear optimization), and introduction to complexity analysis. Object-oriented, efficient implementations of algorithms are emphasized.Subjects

databases | databases | data structures | data structures | divide and conquer algorithm | divide and conquer algorithm | greedy algorithm | greedy algorithm | dynamic programming | dynamic programming | branch and bound | branch and bound | linear optimization | linear optimization | nonlinear optimization | nonlinear optimization | approximate queues | approximate queues | network designs | network designsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.046J Design and Analysis of Algorithms (MIT) 6.046J Design and Analysis of Algorithms (MIT)

Description

Techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics include sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; greedy algorithms; amortized analysis; graph algorithms; and shortest paths. Advanced topics may include network flow, computational geometry, number-theoretic algorithms, polynomial and matrix calculations, caching, and parallel computing. Techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics include sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; greedy algorithms; amortized analysis; graph algorithms; and shortest paths. Advanced topics may include network flow, computational geometry, number-theoretic algorithms, polynomial and matrix calculations, caching, and parallel computing.Subjects

sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide and conquer | divide and conquer | dynamic programming | dynamic programming | greedy algorithms | greedy algorithms | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest pathsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.006 Introduction to Algorithms (MIT) 6.006 Introduction to Algorithms (MIT)

Description

This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems. This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems.Subjects

algorithms | algorithms | python | python | python cost model | python cost model | binary search trees | binary search trees | hashing | hashing | sorting | sorting | searching | searching | shortest paths | shortest paths | dynamic programming | dynamic programming | numerics | numerics | document distance | document distance | longest common substring | longest common substring | dijkstra | dijkstra | fibonacci | fibonacci | image resizing | image resizing | chaining | chaining | hash functions | hash functions | priority queues | priority queues | breadth first search | breadth first search | depth first search | depth first search | memoization | memoization | divide and conquer | divide and conquerLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world. This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.Subjects

approximation | approximation | science | science | engineering | engineering | managing complexity | managing complexity | divide and conquer | divide and conquer | heterogeneous hierarchies | heterogeneous hierarchies | homogeneous hierarchies | homogeneous hierarchies | proportional reasoning | proportional reasoning | conservation/box models | conservation/box models | dimensional analysis | dimensional analysis | special cases | special cases | extreme cases | extreme cases | discretization | discretization | spring models | spring models | symmetry | symmetry | invariance | invariance | discarding information | discarding information | oil imports | oil imports | tree representations | tree representations | gold | gold | random walks | random walks | UNIX | UNIX | triangle bisection | triangle bisection | pentagonal heat flow | pentagonal heat flow | jump heights | jump heights | simple calculus | simple calculus | drag | drag | cycling | cycling | swimming | swimming | flying | flying | flight | flight | algebraic symmetry | algebraic symmetry | densities | densities | hydrogen size | hydrogen size | bending of light | bending of light | Buckingham Pi Theorem | Buckingham Pi Theorem | pulley acceleration | pulley acceleration | waves | wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.) In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.)Subjects

approximation | approximation | science | science | engineering | engineering | complexity | complexity | divide and conquer | divide and conquer | abstraction | abstraction | symmetry | symmetry | proportion | proportion | dimension | dimension | lumping | lumping | probabalistic reasoning | probabalistic reasoningLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-RES.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.046J Design and Analysis of Algorithms (MIT) 6.046J Design and Analysis of Algorithms (MIT)

Description

Includes audio/video content: AV lectures. This is an intermediate algorithms course with an emphasis on teaching techniques for the design and analysis of efficient algorithms, emphasizing methods of application. Topics include divide-and-conquer, randomization, dynamic programming, greedy algorithms, incremental improvement, complexity, and cryptography. Includes audio/video content: AV lectures. This is an intermediate algorithms course with an emphasis on teaching techniques for the design and analysis of efficient algorithms, emphasizing methods of application. Topics include divide-and-conquer, randomization, dynamic programming, greedy algorithms, incremental improvement, complexity, and cryptography.Subjects

algorithm | algorithm | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide and conquer | divide and conquer | dynamic programming | dynamic programming | greedy algorithms | greedy algorithms | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | cryptography | cryptographyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.204 Computer Algorithms in Systems Engineering (MIT)

Description

This course covers concepts of computation used in analysis of engineering systems. It includes the following topics: data structures, relational database representations of engineering data, algorithms for the solution and optimization of engineering system designs (greedy, dynamic programming, branch and bound, graph algorithms, nonlinear optimization), and introduction to complexity analysis. Object-oriented, efficient implementations of algorithms are emphasized.Subjects

databases | data structures | divide and conquer algorithm | greedy algorithm | dynamic programming | branch and bound | linear optimization | nonlinear optimization | approximate queues | network designsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.046J Design and Analysis of Algorithms (MIT)

Description

This is an intermediate algorithms course with an emphasis on teaching techniques for the design and analysis of efficient algorithms, emphasizing methods of application. Topics include divide-and-conquer, randomization, dynamic programming, greedy algorithms, incremental improvement, complexity, and cryptography.Subjects

algorithm | sorting | search trees | heaps | hashing | divide and conquer | dynamic programming | greedy algorithms | amortized analysis | graph algorithms | shortest paths | network flow | cryptographyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRES.6-011 The Art of Insight in Science and Engineering: Mastering Complexity (MIT)

Description

In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. (Description courtesy of MIT Press.)Subjects

approximation | science | engineering | complexity | divide and conquer | abstraction | symmetry | proportion | dimension | lumping | probabalistic reasoningLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.046J Design and Analysis of Algorithms (MIT)

Description

Techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics include sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; greedy algorithms; amortized analysis; graph algorithms; and shortest paths. Advanced topics may include network flow, computational geometry, number-theoretic algorithms, polynomial and matrix calculations, caching, and parallel computing.Subjects

sorting | search trees | heaps | hashing | divide and conquer | dynamic programming | greedy algorithms | amortized analysis | graph algorithms | shortest pathsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.006 Introduction to Algorithms (MIT)

Description

This course provides an introduction to mathematical modeling of computational problems. It covers the common algorithms, algorithmic paradigms, and data structures used to solve these problems. The course emphasizes the relationship between algorithms and programming, and introduces basic performance measures and analysis techniques for these problems.Subjects

algorithms | python | python cost model | binary search trees | hashing | sorting | searching | shortest paths | dynamic programming | numerics | document distance | longest common substring | dijkstra | fibonacci | image resizing | chaining | hash functions | priority queues | breadth first search | depth first search | memoization | divide and conquerLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.055J The Art of Approximation in Science and Engineering (MIT)

Description

This course teaches simple reasoning techniques for complex phenomena: divide and conquer, dimensional analysis, extreme cases, continuity, scaling, successive approximation, balancing, cheap calculus, and symmetry. Applications are drawn from the physical and biological sciences, mathematics, and engineering. Examples include bird and machine flight, neuron biophysics, weather, prime numbers, and animal locomotion. Emphasis is on low-cost experiments to test ideas and on fostering curiosity about phenomena in the world.Subjects

approximation | science | engineering | managing complexity | divide and conquer | heterogeneous hierarchies | homogeneous hierarchies | proportional reasoning | conservation/box models | dimensional analysis | special cases | extreme cases | discretization | spring models | symmetry | invariance | discarding information | oil imports | tree representations | gold | random walks | UNIX | triangle bisection | pentagonal heat flow | jump heights | simple calculus | drag | cycling | swimming | flying | flight | algebraic symmetry | densities | hydrogen size | bending of light | Buckingham Pi Theorem | pulley acceleration | wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata