Searching for dynamical system : 11 results found | RSS Feed for this search

6.231 Dynamic Programming and Stochastic Control (MIT) 6.231 Dynamic Programming and Stochastic Control (MIT)

Description

This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). We will consider optimal control of a dynamical system over both a finite and an infinite number of stages (finite and infinite horizon). We will also discuss some approximation methods for problems involving large state spaces. Applications of dynamic programming in a variety of fields will be covered in recitations. This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). We will consider optimal control of a dynamical system over both a finite and an infinite number of stages (finite and infinite horizon). We will also discuss some approximation methods for problems involving large state spaces. Applications of dynamic programming in a variety of fields will be covered in recitations.

Subjects

dynamic programming | dynamic programming | stochastic control | stochastic control | decision making | decision making | uncertainty | uncertainty | sequential decision making | sequential decision making | finite horizon | finite horizon | infinite horizon | infinite horizon | approximation methods | approximation methods | state space | state space | large state space | large state space | optimal control | optimal control | dynamical system | dynamical system | dynamic programming and optimal control | dynamic programming and optimal control | deterministic systems | deterministic systems | shortest path | shortest path | state information | state information | rollout | rollout | stochastic shortest path | stochastic shortest path | approximate dynamic programming | approximate dynamic programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc. Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.

Subjects

Nonlinear dynamical systems | Nonlinear dynamical systems | nonlinear waves | nonlinear waves | diffusion | diffusion | stability | stability | characteristics | characteristics | nonlinear steepening | nonlinear steepening | breaking and shock formation | breaking and shock formation | conservation laws | conservation laws | first-order partial differential equations | first-order partial differential equations | finite differences | finite differences | numerical stability | numerical stability | traffic problems | traffic problems | flows in rivers | flows in rivers | internal waves | internal waves | mechanical vibrations | mechanical vibrations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.243J Dynamics of Nonlinear Systems (MIT) 6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems. This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Subjects

nonlinear systems | nonlinear systems | deterministic dynamical systems | deterministic dynamical systems | ordinary differential equations | ordinary differential equations | planar autonomous systems | planar autonomous systems | Picard iteration | Picard iteration | contraction mapping theorem | contraction mapping theorem | Bellman-Gronwall lemma | Bellman-Gronwall lemma | Lyapunov methods | Lyapunov methods | feedback linearization | feedback linearization | nonlinear circuits | nonlinear circuits | control systems | control systems | local controllability | local controllability | volume evolution | volume evolution | system analysis | system analysis | singular perturbations | singular perturbations | averaging | averaging | local behavior | local behavior | trajectories | trajectories | equilibria | equilibria | storage functions | storage functions | stability analysis | stability analysis | continuity | continuity | differential equations | differential equations | system models | system models | parameters | parameters | input/output | input/output | state-space | state-space | 16.337 | 16.337

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.622J Pattern Recognition and Analysis (MIT) MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class. This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.

Subjects

MAS.622 | MAS.622 | 1.126 | 1.126 | pattern recognition | pattern recognition | feature detection | feature detection | classification | classification | probability theory | probability theory | pattern analysis | pattern analysis | conditional probability | conditional probability | bayes rule | bayes rule | random vectors | decision theory | random vectors | decision theory | ROC curves | ROC curves | likelihood ratio test | likelihood ratio test | fisher discriminant | fisher discriminant | template-based recognition | template-based recognition | feature extraction | feature extraction | eigenvector and multilinear analysis | eigenvector and multilinear analysis | linear discriminant | linear discriminant | perceptron learning | perceptron learning | optimization by gradient descent | optimization by gradient descent | support vecotr machines | support vecotr machines | K-nearest-neighbor classification | K-nearest-neighbor classification | parzen estimation | parzen estimation | unsupervised learning | unsupervised learning | clustering | clustering | vector quantization | vector quantization | K-means | K-means | Expectation-Maximization | Expectation-Maximization | Hidden markov models | Hidden markov models | viterbi algorithm | viterbi algorithm | Baum-Welch algorithm | Baum-Welch algorithm | linear dynamical systems | linear dynamical systems | Kalman filtering | Kalman filtering | Bayesian networks | Bayesian networks | decision trees | decision trees | reinforcement learning | reinforcement learning | genetic algorithms | genetic algorithms

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.438 Algorithms for Inference (MIT) 6.438 Algorithms for Inference (MIT)

Description

This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference. This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference.

Subjects

inference | inference | algorithm | algorithm | graphical model | graphical model | factor graph | factor graph | markov chain | markov chain | Gaussian model | Gaussian model | loopy belief propagation | loopy belief propagation | EM algorithm | EM algorithm | statistical inference | statistical inference | probabilistic graphical model | probabilistic graphical model | Hidden Markov model | Hidden Markov model | linear dynamical systems | linear dynamical systems | Sum-product algorithm | Sum-product algorithm | junction tree algorithm | junction tree algorithm | Forward-backward algorithm | Forward-backward algorithm | Kalman filtering | Kalman filtering | smoothing | smoothing | Variational method | Variational method | mean-field theory | mean-field theory | Min-sum algorithm | Min-sum algorithm | Viterbi algorithm | Viterbi algorithm | parameter estimation | parameter estimation | learning structure | learning structure

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Subjects

nonlinear systems | deterministic dynamical systems | ordinary differential equations | planar autonomous systems | Picard iteration | contraction mapping theorem | Bellman-Gronwall lemma | Lyapunov methods | feedback linearization | nonlinear circuits | control systems | local controllability | volume evolution | system analysis | singular perturbations | averaging | local behavior | trajectories | equilibria | storage functions | stability analysis | continuity | differential equations | system models | parameters | input/output | state-space | 16.337

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.231 Dynamic Programming and Stochastic Control (MIT)

Description

This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). We will consider optimal control of a dynamical system over both a finite and an infinite number of stages (finite and infinite horizon). We will also discuss some approximation methods for problems involving large state spaces. Applications of dynamic programming in a variety of fields will be covered in recitations.

Subjects

dynamic programming | stochastic control | decision making | uncertainty | sequential decision making | finite horizon | infinite horizon | approximation methods | state space | large state space | optimal control | dynamical system | dynamic programming and optimal control | deterministic systems | shortest path | state information | rollout | stochastic shortest path | approximate dynamic programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.311 Principles of Applied Mathematics (MIT)

Description

Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.

Subjects

Nonlinear dynamical systems | nonlinear waves | diffusion | stability | characteristics | nonlinear steepening | breaking and shock formation | conservation laws | first-order partial differential equations | finite differences | numerical stability | traffic problems | flows in rivers | internal waves | mechanical vibrations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.

Subjects

MAS.622 | 1.126 | pattern recognition | feature detection | classification | probability theory | pattern analysis | conditional probability | bayes rule | random vectors | decision theory | ROC curves | likelihood ratio test | fisher discriminant | template-based recognition | feature extraction | eigenvector and multilinear analysis | linear discriminant | perceptron learning | optimization by gradient descent | support vecotr machines | K-nearest-neighbor classification | parzen estimation | unsupervised learning | clustering | vector quantization | K-means | Expectation-Maximization | Hidden markov models | viterbi algorithm | Baum-Welch algorithm | linear dynamical systems | Kalman filtering | Bayesian networks | decision trees | reinforcement learning | genetic algorithms

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.

Subjects

nonlinear systems | deterministic dynamical systems | ordinary differential equations | planar autonomous systems | Picard iteration | contraction mapping theorem | Bellman-Gronwall lemma | Lyapunov methods | feedback linearization | nonlinear circuits | control systems | local controllability | volume evolution | system analysis | singular perturbations | averaging | local behavior | trajectories | equilibria | storage functions | stability analysis | continuity | differential equations | system models | parameters | input/output | state-space | 16.337

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.438 Algorithms for Inference (MIT)

Description

This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference.

Subjects

inference | algorithm | graphical model | factor graph | markov chain | Gaussian model | loopy belief propagation | EM algorithm | statistical inference | probabilistic graphical model | Hidden Markov model | linear dynamical systems | Sum-product algorithm | junction tree algorithm | Forward-backward algorithm | Kalman filtering | smoothing | Variational method | mean-field theory | Min-sum algorithm | Viterbi algorithm | parameter estimation | learning structure

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata