Searching for eigenvalue : 74 results found | RSS Feed for this search

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams | constant coefficients | constant coefficients | complex numbers | complex numbers | exponentials | exponentials | eigenvalues | eigenvalues | eigenvectors | eigenvectorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.335J Introduction to Numerical Methods (MIT) 18.335J Introduction to Numerical Methods (MIT)

Description

This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®. This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.Subjects

numerical linear algebra | numerical linear algebra | linear systems | linear systems | eigenvalue decomposition | eigenvalue decomposition | QR/SVD factorization | QR/SVD factorization | numerical algorithms | numerical algorithms | IEEE floating point standard | IEEE floating point standard | sparse matrices | sparse matrices | structured matrices | structured matrices | preconditioning | preconditioning | linear algebra software | linear algebra software | Matlab | MatlabLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods Matrix systems | Laplace transform methods Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices.Subjects

Generalized spaces | Generalized spaces | Linear algebra | Linear algebra | Algebra | Universal | Algebra | Universal | Mathematical analysis | Mathematical analysis | Calculus of operations | Calculus of operations | Line geometry | Line geometry | Topology | Topology | matrix theory | matrix theory | systems of equations | systems of equations | vector spaces | vector spaces | systems determinants | systems determinants | eigen values | eigen values | positive definite matrices | positive definite matrices | Markov processes | Markov processes | Fourier transforms | Fourier transforms | differential equations | differential equations | linear algebra | linear algebra | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networksLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods of solution, such as separation of variables, Fourier series and transforms, eigenvalue problems. Green's function methods are emphasized.Technical RequirementsSpecial software is required to use some of the files in this course: .m. This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods of solution, such as separation of variables, Fourier series and transforms, eigenvalue problems. Green's function methods are emphasized.Technical RequirementsSpecial software is required to use some of the files in this course: .m.Subjects

diffusion | diffusion | Laplace equations | Laplace equations | Poisson | Poisson | wave equations | wave equations | separation of variables | separation of variables | Fourier series | Fourier series | Fourier transforms | Fourier transforms | eigenvalue problems | eigenvalue problems | Green's function | Green's function | Heat Equation | Heat Equation | Sturm-Liouville Eigenvalue problems | Sturm-Liouville Eigenvalue problems | quasilinear PDEs | quasilinear PDEs | Bessel functions | Bessel functionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods of solution, such as separation of variables, Fourier series and transforms, eigenvalue problems. Green's function methods are emphasized.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods of solution, such as separation of variables, Fourier series and transforms, eigenvalue problems. Green's function methods are emphasized.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.Subjects

diffusion | diffusion | Laplace equations | Laplace equations | Poisson | Poisson | wave equations | wave equations | separation of variables | separation of variables | Fourier series | Fourier series | Fourier transforms | Fourier transforms | eigenvalue problems | eigenvalue problems | Green's function | Green's function | Heat Equation | Heat Equation | Sturm-Liouville Eigenvalue problems | Sturm-Liouville Eigenvalue problems | quasilinear PDEs | quasilinear PDEs | Bessel functions | Bessel functionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniquesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003SC Engineering Dynamics (MIT) 2.003SC Engineering Dynamics (MIT)

Description

Includes audio/video content: AV lectures. This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems. Includes audio/video content: AV lectures. This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.Subjects

dynamics and vibrations | dynamics and vibrations | lumped-parameter models | lumped-parameter models | kinematics | kinematics | momentum | momentum | systems of particles and rigid bodies | systems of particles and rigid bodies | work-energy concepts | work-energy concepts | virtual displacements and virtual work | virtual displacements and virtual work | Lagrange's equations | Lagrange's equations | equations of motion | equations of motion | linear stability analysis | linear stability analysis | free and forced vibration | free and forced vibration | linear multi-degree of freedom models | linear multi-degree of freedom models | matrix eigenvalue problems | matrix eigenvalue problemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03SC Differential Equations (MIT) 18.03SC Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering. Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06SC Linear Algebra (MIT) 18.06SC Linear Algebra (MIT)

Description

Includes audio/video content: AV lectures. This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra. Includes audio/video content: AV lectures. This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra.Subjects

matrix theory | matrix theory | linear algebra | linear algebra | systems of equations | systems of equations | vector spaces | vector spaces | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | positive definite matrices | positive definite matrices | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networks | Fourier transforms | Fourier transforms | Markov processes | Markov processesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

Includes audio/video content: AV special element video, AV lectures. This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Includes audio/video content: AV special element video, AV lectures. This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices.Subjects

matrix theory | matrix theory | linear algebra | linear algebra | systems of equations | systems of equations | vector spaces | vector spaces | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | positive definite matrices | positive definite matrices | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networks | Fourier transforms | Fourier transforms | Markov processes | Markov processesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003J Dynamics and Control I (MIT) 2.003J Dynamics and Control I (MIT)

Description

Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems. Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems.Subjects

dynamics and vibrations of lumped-parameter models | dynamics and vibrations of lumped-parameter models | mechanical systems | mechanical systems | Kinematics | Kinematics | Force-momentum formulation | Force-momentum formulation | systems of particles | systems of particles | rigid bodies in planar motion | rigid bodies in planar motion | Work-energy concepts | Work-energy concepts | Virtual displacements | Virtual displacements | virtual work | virtual work | Lagrange's equations | Lagrange's equations | Linearization of equations of motion | Linearization of equations of motion | Linear stability analysis | Linear stability analysis | Free vibration | Free vibration | forced vibration | forced vibration | linear multi-degree of freedom models | linear multi-degree of freedom models | matrix eigenvalue problems | matrix eigenvalue problems | numerical methods | numerical methods | MATLAB | MATLABLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor C This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor CSubjects

energetics | energetics | visualization | visualization | graph | graph | plot | plot | chart | chart | materials science | materials science | DMSE | DMSE | structure | structure | symmetry | symmetry | mechanics | mechanics | physicss | physicss | solids and soft materials | solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalue | eigenvalue | eigenvector | eigenvector | quadratic form | quadratic form | tensor operation | tensor operation | symmetry operation | symmetry operation | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | ODE | ODE | solution | solution | vector | vector | matrix | matrix | determinant | determinant | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walk | random walk | Mathematica | Mathematica | simulation | simulationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.73 Introductory Quantum Mechanics I (MIT) 5.73 Introductory Quantum Mechanics I (MIT)

Description

5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, SchrÃ¶dinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymmetric potentials (hydrogen atom), and angular momentum and spin. The course also examines approximation methods: variational principle and perturbation theory. 5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, SchrÃ¶dinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymmetric potentials (hydrogen atom), and angular momentum and spin. The course also examines approximation methods: variational principle and perturbation theory.Subjects

quantum mechanics | quantum mechanics | NMR | NMR | kinetic isotope effects | kinetic isotope effects | hilbert space | hilbert space | eigenvalues | eigenvalues | particle in a box | particle in a box | harmonic oscillator | harmonic oscillator | perturbation theory | perturbation theory | angular momentum | angular momentum | Wigner-Eckart theorem | Wigner-Eckart theorem | hydrogen atom | hydrogen atom | spin-orbit interaction | spin-orbit interaction | Born Oppenheimer approximation | Born Oppenheimer approximation | Hartree-Fock | Hartree-Fock | Slater-Condon rules | Slater-Condon rulesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.321 Quantum Theory I (MIT) 8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement. 8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.Subjects

eigenstates | eigenstates | uncertainty relation | uncertainty relation | observables | observables | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.322 Quantum Theory II (MIT) 8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation. 8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.Subjects

uncertainty relation | uncertainty relation | observables | observables | eigenstates | eigenstates | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | quantization | quantization | EM radiation field | EM radiation field | electromagnetic radiation field | electromagnetic radiation field | adiabatic theorem | adiabatic theorem | Berry?s phase | Berry?s phase | many-particle systems | many-particle systems | Dirac equation | Dirac equation | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.335J Introduction to Numerical Methods (MIT) 18.335J Introduction to Numerical Methods (MIT)

Description

This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®. This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.Subjects

numerical linear algebra | numerical linear algebra | linear systems | linear systems | eigenvalue decomposition | eigenvalue decomposition | QR/SVD factorization | QR/SVD factorization | numerical algorithms | numerical algorithms | IEEE floating point standard | IEEE floating point standard | sparse matrices | sparse matrices | structured matrices | structured matrices | preconditioning | preconditioning | linear algebra software | linear algebra software | Matlab | MatlabLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat/diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems. This course provides students with the basic analytical and computational tools of linear partial differential equations (PDEs) for practical applications in science engineering, including heat/diffusion, wave, and Poisson equations. Analytics emphasize the viewpoint of linear algebra and the analogy with finite matrix problems. Numerics focus on finite-difference and finite-element techniques to reduce PDEs to matrix problems.Subjects

diffusion | diffusion | Laplace equations | Laplace equations | Poisson | Poisson | wave equations | wave equations | separation of variables | separation of variables | Fourier series | Fourier series | Fourier transforms | Fourier transforms | eigenvalue problems | eigenvalue problems | Green's function | Green's function | Heat Equation | Heat Equation | Sturm-Liouville Eigenvalue problems | Sturm-Liouville Eigenvalue problems | quasilinear PDEs | quasilinear PDEs | Bessel functionsORDS | Bessel functionsORDSLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-18.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods and tools for solving these PDEs, such as separation of variables, Fourier series and transforms, eigenvalue problems, and Green's functions. This course covers the classical partial differential equations of applied mathematics: diffusion, Laplace/Poisson, and wave equations. It also includes methods and tools for solving these PDEs, such as separation of variables, Fourier series and transforms, eigenvalue problems, and Green's functions.Subjects

diffusion | diffusion | Laplace equations | Laplace equations | Poisson | Poisson | wave equations | wave equations | separation of variables | separation of variables | Fourier series | Fourier series | Fourier transforms | Fourier transforms | eigenvalue problems | eigenvalue problems | Green's function | Green's function | Heat Equation | Heat Equation | Sturm-Liouville Eigenvalue problems | Sturm-Liouville Eigenvalue problems | quasilinear PDEs | quasilinear PDEs | Bessel functions | Bessel functionsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.335J Introduction to Numerical Methods (MIT) 18.335J Introduction to Numerical Methods (MIT)

Description

The focus of this course is on numerical linear algebra and numerical methods for solving ordinary differential equations. Topics include linear systems of equations, least square problems, eigenvalue problems, and singular value problems. The focus of this course is on numerical linear algebra and numerical methods for solving ordinary differential equations. Topics include linear systems of equations, least square problems, eigenvalue problems, and singular value problems.Subjects

linear algebra | linear algebra | ordinary differential equations | ordinary differential equations | linear systems of equations | linear systems of equations | least square problems | least square problems | eigenvalue problems | eigenvalue problems | singular value problems | singular value problemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is an introduction to the basics of random matrix theory, motivated by engineering and scientific applications. This course is an introduction to the basics of random matrix theory, motivated by engineering and scientific applications.Subjects

Random matrix theory | Random matrix theory | Matrix Jacobians | Matrix Jacobians | Wishart Matrices | Wishart Matrices | Wigner's Semi-Circular laws | Wigner's Semi-Circular laws | Matrix beta ensembles | Matrix beta ensembles | free probability | free probability | spherical coordinates | spherical coordinates | wedging | wedging | Plucker coordinates | Plucker coordinates | matrix factorizations | matrix factorizations | householder transformations | householder transformations | Stiefel manifold | Stiefel manifold | Cauchey-Binet theorem | Cauchey-Binet theorem | Telatar's paper | Telatar's paper | level densities | level densities | orthogonal polynomials | orthogonal polynomials | matrix integrals | matrix integrals | hypergeometric functions | hypergeometric functions | wireless communictions | wireless communictions | eigenvalue density | eigenvalue density | sample covariance matrices | sample covariance matrices | Marcenko-Pastur theorem | Marcenko-Pastur theorem | wireless communications | wireless communicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Includes audio/video content: AV lectures. Together, this course and 8.06 Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Includes audio/video content: AV lectures. Together, this course and 8.06 Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

quantum physics | quantum physics | quantum mechanics | quantum mechanics | Schrodinger equation | Schrodinger equation | Dirac's notation | Dirac's notation | Harmonic oscillator | Harmonic oscillator | wave functions | wave functions | angular momentum | angular momentum | eigenvalues | eigenvalues | eigenstates | eigenstates | spherical harmonics | spherical harmonics | spin systems | spin systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.700 Linear Algebra (MIT) 18.700 Linear Algebra (MIT)

Description

This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs. This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs.Subjects

linear algebra | linear algebra | vector space | vector space | system of linear equations | system of linear equations | bases | bases | linear independence | linear independence | matrices | matrices | matrix | matrix | determinant | determinant | eigenvalue | eigenvalue | inner product | inner product | quadratic form | quadratic form | canonical form | canonical formLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata