Searching for eigenvector : 23 results found | RSS Feed for this search

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams | constant coefficients | constant coefficients | complex numbers | complex numbers | exponentials | exponentials | eigenvalues | eigenvalues | eigenvectors | eigenvectorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMathematical Methods II Mathematical Methods II

Description

This course consists of a introduction to linear algebra. This course consists of a introduction to linear algebra.Subjects

Bachelor in Statistics and Business | Bachelor in Statistics and Business | Algebra | Algebra | Prerequisites | Prerequisites | Systems of linear equations | Systems of linear equations | Eigenvalues and eigenvectors | Eigenvalues and eigenvectors | General information | General information | Orthogonality and least-square problems | Orthogonality and least-square problems | Singular value decomposition | Singular value decomposition | ística y Empresa | ística y Empresa | Real vector spaces | Real vector spaces | Matrices and determinants | Matrices and determinants | Diagonalization | Diagonalization | 2012 | 2012License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods Matrix systems | Laplace transform methods Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniquesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03SC Differential Equations (MIT) 18.03SC Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering. Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity. This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.Subjects

crystallography | crystallography | rotation | rotation | translation | translation | lattice | lattice | plane | plane | point group | point group | space group | space group | motif | motif | glide plane | glide plane | mirror plane | mirror plane | reflection | reflection | spherical trigonometry | spherical trigonometry | binary compound | binary compound | coordination number | coordination number | ion | ion | crystal structure | crystal structure | tetrahedral | tetrahedral | octahedral | octahedral | packing | packing | monoclinic | monoclinic | triclinic | triclinic | orthorhombic | orthorhombic | cell | cell | screw axis | screw axis | eigenvector | eigenvector | stress | stress | strain | strain | anisotropy | anisotropy | anisotropic | anisotropic | piezoelectric | piezoelectricLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor C This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor CSubjects

energetics | energetics | visualization | visualization | graph | graph | plot | plot | chart | chart | materials science | materials science | DMSE | DMSE | structure | structure | symmetry | symmetry | mechanics | mechanics | physicss | physicss | solids and soft materials | solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalue | eigenvalue | eigenvector | eigenvector | quadratic form | quadratic form | tensor operation | tensor operation | symmetry operation | symmetry operation | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | ODE | ODE | solution | solution | vector | vector | matrix | matrix | determinant | determinant | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walk | random walk | Mathematica | Mathematica | simulation | simulationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMAS.622J Pattern Recognition and Analysis (MIT) MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class. This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.Subjects

MAS.622 | MAS.622 | 1.126 | 1.126 | pattern recognition | pattern recognition | feature detection | feature detection | classification | classification | probability theory | probability theory | pattern analysis | pattern analysis | conditional probability | conditional probability | bayes rule | bayes rule | random vectors | decision theory | random vectors | decision theory | ROC curves | ROC curves | likelihood ratio test | likelihood ratio test | fisher discriminant | fisher discriminant | template-based recognition | template-based recognition | feature extraction | feature extraction | eigenvector and multilinear analysis | eigenvector and multilinear analysis | linear discriminant | linear discriminant | perceptron learning | perceptron learning | optimization by gradient descent | optimization by gradient descent | support vecotr machines | support vecotr machines | K-nearest-neighbor classification | K-nearest-neighbor classification | parzen estimation | parzen estimation | unsupervised learning | unsupervised learning | clustering | clustering | vector quantization | vector quantization | K-means | K-means | Expectation-Maximization | Expectation-Maximization | Hidden markov models | Hidden markov models | viterbi algorithm | viterbi algorithm | Baum-Welch algorithm | Baum-Welch algorithm | linear dynamical systems | linear dynamical systems | Kalman filtering | Kalman filtering | Bayesian networks | Bayesian networks | decision trees | decision trees | reinforcement learning | reinforcement learning | genetic algorithms | genetic algorithmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV selected lectures. This course is about the mathematics that is most widely used in the mechanical engineering core subjects: An introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations. Includes audio/video content: AV selected lectures. This course is about the mathematics that is most widely used in the mechanical engineering core subjects: An introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations.Subjects

differential equations | differential equations | linear algebra | linear algebra | linear differential equations | linear differential equations | ordinary | ordinary | partial | partial | vector space | vector space | first order | first order | second order | second order | Heaviside | Heaviside | delta | delta | Dirac | Dirac | exponential | exponential | sinusoid | sinusoid | real | real | complex | complex | forced oscillations | forced oscillations | Laplace transform | Laplace transform | graph | graph | nonlinear | nonlinear | source | source | sink | sink | saddle | saddle | spiral | spiral | Euler | Euler | linearization | linearization | Guassian | Guassian | matrix | matrix | mechanical engineer | mechanical engineer | eigenvector | eigenvector | eigenvalue | eigenvalue | exponentiation | exponentiation | least squares | least squaresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler is an in-depth series of videos about differential equations and the MATLAB® ODE suite. These videos are suitable for students and life-long learners to enjoy.About the Instructors Gilbert Strang is the MathWorks Professor of Mathematics at MIT. His research focuses on mathematical analysis, linear algebra and PDEs. He has written textbooks on linear algebra, computational science, finite elements, wavelets, GPS, and calculus.Cleve Moler is chief mathematician, chairman, and cofounder of MathWorks. He was a professor of math and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. These videos w Includes audio/video content: AV lectures. Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler is an in-depth series of videos about differential equations and the MATLAB® ODE suite. These videos are suitable for students and life-long learners to enjoy.About the Instructors Gilbert Strang is the MathWorks Professor of Mathematics at MIT. His research focuses on mathematical analysis, linear algebra and PDEs. He has written textbooks on linear algebra, computational science, finite elements, wavelets, GPS, and calculus.Cleve Moler is chief mathematician, chairman, and cofounder of MathWorks. He was a professor of math and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. These videos wSubjects

differential equations | differential equations | ODE | MATLAB | ODE | MATLAB | first order equations | first order equations | second order equations | second order equations | matrices | matrices | Laplace transform | Laplace transform | linear algebra | linear algebra | eigenvalues | eigenvalues | eigenvectors | eigenvectors | Fourier series | Fourier series | Runge-Kutta | Runge-Kutta | Tumbling box | Tumbling box | predator-prey equations | predator-prey equations | Lorenz Attractor | Lorenz AttractorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods | Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagrams | constant coefficients | complex numbers | exponentials | eigenvalues | eigenvectorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.Subjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods | Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Linear Algebra is both rich in theory and full of interesting applications; in this course the student will try to balance both. This course includes a review of topics learned in Linear Algebra I. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Mathematics 212)Subjects

sets | functions | fundamental theorem | matrices | row operations | factorization | linear programming | spectral theory | eigenvalues | eigenvectors | vector spaces | markov chains | inner product spaces | self-adjoint operators | numerical methods | differential equations | Computer science | I100License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.Subjects

energetics | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | linear algebra | orthonormal basis | eigenvalues | eigenvectors | quadratic forms | tensor operations | symmetry operations | calculus | complex analysis | differential equations | theory of distributions | fourier analysis | random walks | mathematical technicques | materials science | materials engineering | materials structure | symmetry | applied fields | materials response | solids mechanics | solids physics | soft materials | multi-variable calculus | ordinary differential equations | partial differential equations | applied mathematics | mathematical techniquesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.087 Engineering Math: Differential Equations and Linear Algebra (MIT)

Description

This course is about the mathematics that is most widely used in the mechanical engineering core subjects: An introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations.Subjects

differential equations | linear algebra | linear differential equations | ordinary | partial | vector space | first order | second order | Heaviside | delta | Dirac | exponential | sinusoid | real | complex | forced oscillations | Laplace transform | graph | nonlinear | source | sink | saddle | spiral | Euler | linearization | Guassian | matrix | mechanical engineer | eigenvector | eigenvalue | exponentiation | least squaresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03SC Differential Equations (MIT)

Description

The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.Subjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods | Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.Subjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods | Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.Subjects

MAS.622 | 1.126 | pattern recognition | feature detection | classification | probability theory | pattern analysis | conditional probability | bayes rule | random vectors | decision theory | ROC curves | likelihood ratio test | fisher discriminant | template-based recognition | feature extraction | eigenvector and multilinear analysis | linear discriminant | perceptron learning | optimization by gradient descent | support vecotr machines | K-nearest-neighbor classification | parzen estimation | unsupervised learning | clustering | vector quantization | K-means | Expectation-Maximization | Hidden markov models | viterbi algorithm | Baum-Welch algorithm | linear dynamical systems | Kalman filtering | Bayesian networks | decision trees | reinforcement learning | genetic algorithmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRES.18-009 Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler (MIT)

Description

Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler is an in-depth series of videos about differential equations and the MATLAB® ODE suite. These videos are suitable for students and life-long learners to enjoy.About the Instructors Gilbert Strang is the MathWorks Professor of Mathematics at MIT. His research focuses on mathematical analysis, linear algebra and PDEs. He has written textbooks on linear algebra, computational science, finite elements, wavelets, GPS, and calculus.Cleve Moler is chief mathematician, chairman, and cofounder of MathWorks. He was a professor of math and computer science for almost 20 years at the University of Michigan, Stanford University, and the University of New Mexico. These videos were produced by The MathWorks® and areSubjects

differential equations | ODE | MATLAB | first order equations | second order equations | matrices | Laplace transform | linear algebra | eigenvalues | eigenvectors | Fourier series | Runge-Kutta | Tumbling box | predator-prey equations | Lorenz AttractorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor CSubjects

energetics | visualization | graph | plot | chart | materials science | DMSE | structure | symmetry | mechanics | physicss | solids and soft materials | linear algebra | orthonormal basis | eigenvalue | eigenvector | quadratic form | tensor operation | symmetry operation | calculus | complex analysis | differential equations | ODE | solution | vector | matrix | determinant | theory of distributions | fourier analysis | random walk | Mathematica | simulationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.60 Symmetry, Structure, and Tensor Properties of Materials (MIT)

Description

This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.Subjects

crystallography | rotation | translation | lattice | plane | point group | space group | motif | glide plane | mirror plane | reflection | spherical trigonometry | binary compound | coordination number | ion | crystal structure | tetrahedral | octahedral | packing | monoclinic | triclinic | orthorhombic | cell | screw axis | eigenvector | stress | strain | anisotropy | anisotropic | piezoelectricLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata