Searching for electric structure of matter : 15 results found | RSS Feed for this search

1

8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT) 8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT)

Description

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™ Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™

Subjects

dielectrics | dielectrics | conductors | conductors | electric structure of matter | electric structure of matter | Coulomb's law | Coulomb's law | electrostatics | electrostatics | electromagnetism | electromagnetism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Physics II: Electricity and Magnetism (MIT) 8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetism with an Experimental Focus (MIT) Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli. This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | Electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | electrostatic potential | electrostatic potential | electrostatic energy | electrostatic energy | electric current | electric current | magnetic field | magnetic field | Ampere's law | Ampere's law | magnetic | magnetic | electric | electric | time-varying fields | time-varying fields | Faraday's law | Faraday's law | induction | induction | circuits | circuits | electromagnetic waves | electromagnetic waves | Maxwell's equations | Maxwell's equations | 8.02 | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT) 8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02SC Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism, including electric fields, magnetic fields, electromagnetic forces, conductors and dielectrics, electromagnetic waves, and the nature of light.

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT)

Description

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™

Subjects

dielectrics | conductors | electric structure of matter | Coulomb's law | electrostatics | electromagnetism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | electrostatic potential | electrostatic energy | electric current | magnetic field | Ampere's law | magnetic | electric | time-varying fields | Faraday's law | induction | circuits | electromagnetic waves | Maxwell's equations | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata